Project description:Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.
Project description:Research shows that gamma activity changes in Alzheimer's disease (AD), revealing synaptic pathology and potential therapeutic applications. We aim to explore whether cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal gamma frequency power in healthy individuals at high risk of developing AD. We analyzed low (30-50 Hz) and high gamma (50-80 Hz) power over six brain regions at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in a dataset collected from an aging cohort during N-back working memory (WM) testing at two different load conditions (N = 0 or 2). Cognitively healthy (CH) study participants (≥60 years old) of both sexes were divided into two subgroups: normal amyloid/tau ratios (CH-NAT, n = 10) or pathological amyloid/tau (CH-PAT, n = 14) in cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher in CH-PATs than CH-NATs over frontal and central regions (p = 0.014∼0.032, effect size (Cohen's d) = 0.95∼1.11). However, during high load (2-back) challenge, low gamma is lower in CH-PATs compared to CH-NATs over the left temporal region (p = 0.045, Cohen's d = -0.96), and high gamma is lower over the parietal region (p = 0.035, Cohen's d = -1.02). Overall, our studies show a medium to large negative effect size across the scalp (Cohen's d = -0.51∼-1.02). In addition, low gamma during 2-back is positively correlated with 0-back accuracy over all regions except the occipital region only in CH-NATs (r = 0.69∼0.77, p = 0.0098∼0.027); high gamma during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs (r = 0.68∼0.78, p = 0.007∼0.030); high gamma during 2-back negatively correlated with 0-back response time over parietal, right temporal, and occipital regions in CH-NATs (r = -0.70∼-0.66, p = 0.025∼0.037). We interpret these preliminary results to show: (1) gamma power is compromised in AD-biomarker positive individuals, who are otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot findings encourage further investigations in combining cognitive challenges and qEEG in developing neurophysiology-based markers for identifying individuals in the prodromal stage, to help improving our understanding of AD pathophysiology and the contributions of low- and high-frequency gamma oscillations in cognitive functions.
Project description:Electroencephalographic (EEG) alpha oscillations have been related to heart rate variability (HRV) and both change in Alzheimer's disease (AD). We explored if task switching reveals altered alpha power and HRV in cognitively healthy individuals with AD pathology in cerebrospinal fluid (CSF) and whether HRV improves the AD pathology classification by alpha power alone. We compared low and high alpha event-related desynchronization (ERD) and HRV parameters during task switch testing between two groups of cognitively healthy participants classified by CSF amyloid/tau ratio: normal (CH-NAT, n = 19) or pathological (CH-PAT, n = 27). For the task switching paradigm, participants were required to name the color or word for each colored word stimulus, with two sequential stimuli per trial. Trials include color (cC) or word (wW) repeats with low load repeating, and word (cW) or color switch (wC) for high load switching. HRV was assessed for RR interval, standard deviation of RR-intervals (SDNN) and root mean squared successive differences (RMSSD) in time domain, and low frequency (LF), high frequency (HF), and LF/HF ratio in frequency domain. Results showed that CH-PATs compared to CH-NATs presented: 1) increased (less negative) low alpha ERD during low load repeat trials and lower word switch cost (low alpha: p = 0.008, Cohen's d = -0.83, 95% confidence interval -1.44 to -0.22, and high alpha: p = 0.019, Cohen's d = -0.73, 95% confidence interval -1.34 to -0.13); 2) decreasing HRV from rest to task, suggesting hyper-activated sympatho-vagal responses. 3) CH-PATs classification by alpha ERD was improved by supplementing HRV signatures, supporting a potentially compromised brain-heart interoceptive regulation in CH-PATs. Further experiments are needed to validate these findings for clinical significance.
Project description:ObjectiveTo test the hypothesis that among cognitively healthy individuals, distinct groups exist in terms of amyloid and phosphorylated-tau accumulation rates; that if rapid accumulator groups exist, their membership can be predicted by Alzheimer's disease (AD) risk factors, and that time points of significant increase in AD protein accumulation will be evident.MethodsThe analysis reports data from 263 individuals from the BIOCARD and 184 individuals from the Baltimore Longitudinal Study of Aging with repeated cerebrospinal fluid (CSF) and positron emission tomography (PET) sampling, respectively. We used latent class mixed-effect models to identify distinct classes of amyloid (CSF and PET) and p-Tau (CSF) accumulation rates and generalized additive modeling to investigate non-linear changes to AD biomarkers.ResultsFor both amyloid and p-Tau latent class models we confirmed the existence of two separate classes: accumulators and non-accumulators. The accumulator and non-accumulator groups differed significantly in terms of baseline AD protein levels and slope of change. APOE ε4 carrier status and episodic memory predicted amyloid class membership. Non-linear models revealed time points of significant increase in the rate of amyloid and p-Tau accumulation whereby APOE ε4 carrier status associated with earlier age at onset of rapid accumulation.ConclusionsThe current analysis demonstrates the existence of distinct classes of amyloid and p-Tau accumulators. Predictors of class membership were identified but the overall accuracy of the models was modest, highlighting the need for additional biomarkers that are sensitive to early disease phenotypes.
Project description:We recently discovered three distinct pathophysiological subtypes in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics: one with neuronal hyperplasticity, a second with innate immune system activation, and a third subtype with blood-brain barrier dysfunction. It remains unclear whether AD proteomic subtype profiles are a consequence of amyloid aggregation, or might exist upstream from aggregated amyloid. We studied this question in 127 older individuals with intact cognition and normal AD biomarkers in two independent cohorts (EMIF-AD MBD and ADNI). We clustered 705 proteins measured in CSF that were previously related to AD. We identified in these cognitively intact individuals without AD pathology three subtypes: two subtypes were seen in both cohorts (n = 49 with neuronal hyperplasticity and n = 44 with blood-brain barrier dysfunction), and one only in ADNI (n = 12 with innate immune activation). The proteins specific for these subtypes strongly overlapped with AD subtype protein profiles (overlap coefficients 92%-71%). Longitudinal p181-tau and amyloid β 1-42 (Aβ42) CSF analysis showed that in the hyperplasticity subtype p181-tau increased (β = 2.6 pg/mL per year, p = 0.01) and Aβ42 decreased over time (β = -4.4 pg/mL per year, p = 0.03), in the innate immune activation subtype p181-tau increased (β = 3.1 pg/mL per year, p = 0.01) while in the blood-brain barrier dysfunction subtype Aβ42 decreased (β = -3.7 pg/mL per year, p = 0.009). These findings suggest that AD proteomic subtypes might already manifest in cognitively normal individuals and may predispose for AD before amyloid has reached abnormal levels.
Project description:BackgroundIndividuals on the preclinical Alzheimer's continuum, particularly those with both amyloid and tau positivity (A + T +), display a rapid cognitive decline and elevated disease progression risk. However, limited studies exist on brain atrophy trajectories within this continuum over extended periods.MethodsThis study involved 367 ADNI participants grouped based on combinations of amyloid and tau statuses determined through cerebrospinal fluid tests. Using longitudinal MRI scans, brain atrophy was determined according to the whole brain, lateral ventricle, and hippocampal volumes and cortical thickness in AD-signature regions. Cognitive performance was evaluated with the Preclinical Alzheimer's Cognitive Composite (PACC). A generalized linear mixed-effects model was used to examine group × time interactions for these measures. In addition, progression risks to mild cognitive impairment (MCI) or dementia were compared among the groups using Cox proportional hazards models.ResultsA total of 367 participants (48 A + T + , 86 A + T - , 63 A - T + , and 170 A - T - ; mean age 73.8 years, mean follow-up 5.1 years, and 47.4% men) were included. For the lateral ventricle and PACC score, the A + T - and A + T + groups demonstrated statistically significantly greater volume expansion and cognitive decline over time than the A - T - group (lateral ventricle: β = 0.757 cm3/year [95% confidence interval 0.463 to 1.050], P < .001 for A + T - , and β = 0.889 cm3/year [0.523 to 1.255], P < .001 for A + T + ; PACC: β = - 0.19 /year [- 0.36 to - 0.02], P = .029 for A + T - , and β = - 0.59 /year [- 0.80 to - 0.37], P < .001 for A + T +). Notably, the A + T + group exhibited additional brain atrophy including the whole brain (β = - 2.782 cm3/year [- 4.060 to - 1.504], P < .001), hippocampus (β = - 0.057 cm3/year [- 0.085 to - 0.029], P < .001), and AD-signature regions (β = - 0.02 mm/year [- 0.03 to - 0.01], P < .001). Cox proportional hazards models suggested an increased risk of progressing to MCI or dementia in the A + T + group versus the A - T - group (adjusted hazard ratio = 3.35 [1.76 to 6.39]).ConclusionsIn cognitively normal individuals, A + T + compounds brain atrophy and cognitive deterioration, amplifying the likelihood of disease progression. Therapeutic interventions targeting A + T + individuals could be pivotal in curbing brain atrophy, cognitive decline, and disease progression.
Project description:Our aim is to explore if cognitive challenge combined with objective physiology can reveal abnormal frontal alpha event-related desynchronization (ERD), in early Alzheimer's disease (AD). We used quantitative electroencephalography (qEEG) to investigate brain activities during N-back working memory (WM) processing at two different load conditions (N = 0 or 2) in an aging cohort. We studied 60-100 year old participants, with normal cognition, and who fits one of two subgroups from cerebrospinal fluid (CSF) proteins: cognitively healthy (CH) with normal amyloid/tau ratio (CH-NAT, n = 10) or pathological amyloid/tau ratio (CH-PAT, n = 14). We recorded behavioral performances, and analyzed alpha power and alpha spectral entropy (SE) at three occasions: during the resting state, and at event-related desynchronization (ERD) [250 ~ 750 ms] during 0-back and 2-back. During 0-back WM testing, the behavioral performance was similar between the two groups, however, qEEG notably differentiated CH-PATs from CH-NATs on the simple, 0-back testing: Alpha ERD decreased from baseline only in the parietal region in CH-NATs, while it decreased in all brain regions in CH-PATs. Alpha SE did not change in CH-NATs, but was increased from baseline in the CH-PATs in frontal and left lateral regions (p<0.01), and was higher in the frontal region (p<0.01) of CH-PATs compared to CH-NATs. The alpha ERD and SE analyses suggest there is frontal lobe dysfunction during WM processing in the CH-PAT stage. Additional power and correlations with behavioral performance were also explored. This study provide pilot information to further evaluate whether this biomarker has clinical significance.
Project description:The correlations between apolipoprotein epsilon 4 (APOE4) status and regional amyloid, tau, and cortical thickness in cognitively normal elderly are not fully understood. Our cross-sectional study aimed to compare regional amyloid/tau burden, and cortical thickness according to APOE4 carrier status and assess correlations between APOE4 and Alzheimer's disease (AD)-related biomarker burdens. We analyzed 185 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Participants aged 55-90 with normal cognitive function were divided into amyloid ß-positive (Aß+) APOE4 carriers (group 1, n = 27), Aß+ APOE4 non-carriers (group 2, n = 29), and Aß- normal controls (group 0, n = 129). We compared amyloid depositions, tau depositions, and cortical thickness among the three groups and assessed correlations between APOE4 existence and imaging biomarkers adjusted for age and sex. The participants in group 2 were older than those in the other groups. The regional amyloid/tau standardized uptake value ratios (SUVRs) did not differ between groups 1 and 2, but the amyloid/tau SUVRs in most regions were numerically higher after adjusting for age difference. APOE4 allele had robust correlations with increased amyloid burden in the fronto-temporo-parietal cortical areas after adjustment for age and sex, but it had weaker and mixed correlations with the regional tau burden and did not have significant correlation with cortical thickness. We identified that the presence of APOE4 allele might be more highly associated with amyloid deposition than with other AD-related biomarkers such as tau or cortical thickness in cognitively normal elderly.
Project description:CSF concentrations of β-amyloid 42 (Aβ42) and phosphorylated tau (p-tau) are well-established biomarkers of Alzheimer's disease and have been studied in relation to several neuropathological features both in patients and in cognitively unimpaired individuals. The CSF p-tau/Aβ42 ratio, a biomarker combining information from both pathophysiological processes, has emerged as a promising tool for monitoring disease progression, even at pre-clinical stages. Here, we studied the association between the CSF p-tau/Aβ42 ratio with downstream markers of pre-clinical Alzheimer's disease progression including brain structure, glucose metabolism, fibrillary Aβ deposition and cognitive performance in 234 cognitively unimpaired individuals, who underwent cognitive testing, a lumbar puncture, MRI, 18F-fluorodeoxyglucose and 18F-flutemetamol PET scanning. We evaluated both main effects and interactions with Alzheimer's disease risk factors, such as older age, female sex and the apoliporoptein E (APOE)-ɛ4 allele, in a priori defined regions of interest and further examined the associations on the whole-brain using voxel-wise regressions. In addition, as the association between CSF Alzheimer's disease biomarkers and brain structure and function may be non-linear, we tested the interaction between the CSF p-tau/Aβ42 ratio and stages of pre-clinical Alzheimer's disease defined using the amyloid (A) and tau (T) classification. We found significantly positive associations between CSF p-tau/Aβ42 and both cortical Aβ deposition and regional grey matter volume while no effect was observed for brain metabolism. A significant interaction with age indicated that, for the same level of CSF p-tau/Aβ42, older individuals displayed both increased Aβ deposition and lower grey matter volume, in widespread cortical areas. In addition, we found that women compared with men had a greater Aβ fibrillary accumulation in midline cortical areas and inferior temporal regions, for the same level of the CSF biomarker. The impact of CSF p-tau/Aβ42 on grey matter volume was modulated by AT stages, with A+T+ individuals displaying significantly less positive associations in areas of early atrophy in the Alzheimer's continuum. Finally, we found that sex and APOE-ɛ4 modulated the association between the CSF biomarker and episodic memory as well as abstract reasoning, respectively. Our data indicate that the CSF p-tau/Aβ42 ratio is strongly associated with multiple downstream neuropathological events in cognitively unimpaired individuals and may thus serve as a potent biomarker to investigate the earliest changes in pre-clinical Alzheimer's disease. Given that its impact on both Aβ deposition and grey matter volume is modulated by specific risk factors, our results highlight the need to take into account such predisposing variables in both clinical practice and prevention trials.
Project description:IntroductionPublished reports of associations between β-amyloid (Aβ) and cortical integrity conflict. Tau biomarkers may help elucidate the complex relationship between pathology and neurodegeneration in aging.MethodsWe measured cortical thickness using magnetic resonance imaging, Aβ using Pittsburgh compound B positron emission tomography (PiB-PET), and tau using flortaucipir (FTP)-PET in 125 cognitively normal older adults. We examined relationships among PET measures, cortical thickness, and cognition.ResultsCortical thickness was reduced in PiB+/FTP+ participants compared to the PiB+/FTP- and PiB-/FTP- groups. Continuous PiB associations with cortical thickness were weak but positive in FTP- participants and negative in FTP+. FTP strongly negatively predicted thickness regardless of PiB status. FTP was associated with memory and cortical thickness, and mediated the association of PiB with memory.DiscussionPast findings linking Aβ and cortical thickness are likely weak due to opposing effects of Aβ on cortical thickness relative to tau burden. Tau, in contrast to Aβ, is strongly related to cortical thickness and memory.