Project description:The efficacy and side effects of endocrine therapy in breast cancer (BC) depend largely on estrogen receptor alpha (ERα) expression, the specific drug administered, and treatment scheduling. Although the benefits of endocrine therapy outweigh any adverse effects in the initial stages of BC, later- or advanced-stage tumors acquire resistance to treatments. The mechanisms underlying tumor resistance to therapy are still not well understood, posing a major challenge for BC patient care. Epigenetic regulation and miRNA expression may be involved in the switch from a treatment-sensitive to a treatment-resistant state and could provide a valid therapeutic strategy for ERα negative BC. Here, a hybrid lysine-specific histone demethylase inhibitor, MC3324, displaying selective estrogen receptor down-regulator-like activities in BC, was used to highlight the interplay between epigenetic and ERα signaling. MC3324 anticancer action is mediated by microRNA (miRNA) expression regulation, indicating an innovative function for this molecule. Integrated analysis suggests a crosstalk between estrogen signaling, ERα interactors, miRNAs, and their putative targets. Specifically, miR-181a-5p expression is regulated by MC3324 and has an impact on cellular levels of ERα. A comparison of breast tumor versus healthy mammary tissues confirmed the important role of miR-181a-5p in ERα regulation and points to its putative predictive function in BC therapy.
Project description:BackgroundMetastasis is a major factor weakening the long-term survival of breast cancer patients. Increasing evidence revealed that long non-coding RNAs (lncRNAs) were involved in the occurrence and development of breast cancer. In this study, we aimed to investigate the role of LGALS8-AS1 in the metastatic progression of breast cancer cells and its potential mechanisms.ResultsThe lncRNA LGALS8-AS1 was highly expressed in breast cancer and associated with poor survival. LGALS8-AS1 functioned as an oncogenic lncRNA that promoted the metastasis of breast cancer both in vitro and in vivo. It upregulated SOX12 via competing as a competing endogenous RNA (ceRNA) for sponging miR-125b-5p and acted on the PI3K/AKT signaling pathway to promote the metastasis of breast cancer. Furthermore, SOX12, in turn, activated LGALS8-AS1 expression via direct recognition of its sequence binding enrichment motif on the LGALS8-AS1 promoter, thereby forming a positive feedback regulatory loop.ConclusionThis study manifested a novel mechanism of LGALS8-AS1 facilitating the metastasis of breast cancer. The LGALS8-AS1/miR-125b-5p/SOX12 reciprocal regulatory loop dyscrasia promoted the migration and invasion of breast cancer cells. This signaling axis could be applicable to the design of novel therapeutic strategies against this malignancy.
Project description:BackgroundCircular RNAs (circRNAs) are increasingly implicated in regulating human carcinogenesis. Previous work showed the oncogenic activity of circ_0018289 in cervical cancer. However, the molecular basis underlying the modulation of circ_0018289 in cervical carcinogenesis is still not fully understood.MethodsThe levels of circ_0018289, microRNA (miR)-183-5p, and transmembrane p24 trafficking protein 5 (TMED5) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Ribonuclease (RNase) R and subcellular localization assays were used to characterize circ_0018289. Cell proliferation was detected by the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (Edu) assays. Cell apoptosis and tube formation were assessed by flow cytometry and tube formation assays, respectively. A dual-luciferase reporter assay was performed to confirm the direct relationship between miR-183-5p and circ_0018289 or TMED5. The role of circ_0018289 in tumor growth was gauged by mouse xenograft experiments.ResultsCirc_0018289 was overexpressed in cervical cancer tissues and cells. Circ_0018289 silencing impeded cell proliferation, enhanced cell apoptosis, and suppressed angiogenesis in vitro, as well as diminished tumor growth in vivo. Mechanistically, circ_0018289 targeted and regulated miR-183-5p by binding to miR-183-5p, and circ_0018289 regulated cervical cancer development and angiogenesis partially through miR-183-5p. Moreover, TMED5 was directly targeted and inhibited by miR-183-5p through the perfect complementary sites in TMED5 3'UTR, and TMED5 knockdown phenocopied miR-183-5p overexpression in suppressing cervical cancer development and angiogenesis. Furthermore, circ_0018289 induced TMED5 expression by competitively binding to shared miR-183-5p.ConclusionOur observations identified the circ_0018289/miR-183-5p/TMED5 regulatory network as a novel molecular basis underlying the modulation of cervical carcinogenesis.
Project description:Numerous studies have shown that circRNAs are aberrantly expressed in various cancers and play a significant role in tumor progression. However, the molecular mechanisms of circRNAs in triple-negative breast cancer (TNBC) remain ambiguous. By intersecting throughput data and qRT-PCR results from tissues and cell lines, circ-TRIO was identified as a potential oncogenic regulator of TNBC. Moreover, circ-TRIO expression was detected in TNBC tissues and was correlated with the recurrence and prognosis of TNBC patients. The circular characteristics of circ-TRIO were verified by RNase R and CHX assays. Functionally, the knockdown of circ-TRIO inhibited the proliferation, migration and invasion of TNBC cells, while the overexpression of circ-TRIO resulted in the opposite impacts. Mechanistically, a dual luciferase reporter assay and RNA immunoprecipitation were performed and indicated that circ-TRIO could combine with miR-432-5p to regulate the expression of coiled-coil domain containing 58 (CCDC58). In summary, our study illustrates that circ-TRIO plays an important role in the progression of TNBC by regulating the miR-432-5p/CCDC58 axis, which could broaden our insight into the underlying mechanisms and provide a novel prognostic marker of TNBC in the clinic.
Project description:MethodsCirc_0075825 expression in adjacent tissues and GC tissues was evaluated by bioinformatics method and quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). How circ_0075825 regulated GC cell growth, migration, invasion, and apoptosis were investigated by cell counting kit-8 assay, transwell assay and flow cytometry. The targeted interplays among circ_0075825, and miR-432-5p and Sex-Determining Region Y-related high-mobility group box 9 (SOX9) were explored by bioinformatics analysis and luciferase reporter gene assay. The regulatory effects of circ_0075825 and miR-432-5p on SOX9 protein expression were probed by western blot.ResultsCirc_0075825 expression was raised in GC tissues and cell lines. Circ_0075825 overexpression promoted the proliferative, migrative and invasive abilities of GC cells, while inhibiting apoptosis, while depletion of circ_0075825 suppressed the malignant biological behaviors of GC cells. SOX9 was identified as one of the direct target genes of miR-432-5p, and circ_0075825 repressed the expression of miR-432-5p, to induce the expression of SOX9. Furthermore, miR-432-5p overexpression counteracted the promoting effect of circ_0075825 on the malignancy of GC cells.ConclusionCirc_0075825 promotes GC progression via sponging miR-432-5p to regulate SOX9 expression level, and it may be a novel therapeutic target for treating GC.
Project description:BackgroundGestational diabetes mellitus (GDM) is pregnancy-related diabetes with vital risks for both mother and the fetus. Molecular studies represent one of the popular approaches for investigating mechanisms associated with the disease nature. One of which is through interaction network analysis via Cytoscape V. 3.6.1.MethodsIn this study, the microRNA (miRNA) expression array of GSE98043 from gene expression omnibus (GEO) database was retrieved and screened. We identified 12 differentially expressed (DE) miRNAs (P ≤ 0.05) and nine target hub-bottleneck genes (disease score > 1) for GDM based on miRNA-target interactions created via plugin ClueGO + Cluepedia + STRING.ResultsMiRNA-target information showed that the miRNAs are mostly up-regulated and hsa-miR-145-5p and hsa-miR-875-5p targets the most genes. Among target genes, IL6, GCG, APOB, and ALB have the highest associations with DE-miRNAs. Gene ontology analysis based on biological processes identification via ClueGO + CluePedia, in addition, showed that target hub-bottlenecks are mainly related to metabolism functions and any changes in this regulatory network could impose fundamental alterations in these processes.ConclusionsIt can be concluded that via these introduced miRNAs and their targets, the molecular tests for diagnosis and treatment of GDM can be improved after applying validation approaches.
Project description:BackgroundCircular RNAs (circRNAs) are abnormally expressed in breast cancer (BC). However, the biological function and mechanism of circHMCU still need to be further explored.MethodsThe expression levels of circHMCU, miR-4458 and phosphoglycerate kinase 1 (PGK1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The glucose uptake, lactate production and ATP level were assayed by related commercial kits. Cell Counting Kit-8 (CCK8), 5'-ethynyl-2'-deoxyuridine (EdU) and flow cytometry assays were used to test cell proliferation and apoptosis, respectively. The migratory and invasive abilities were detected by transwell and wound-healing assays. The relationships among circHMCU, miR-4458 and PGK1 were verified by dual-luciferase reporter assay. The function of circHMCU in tumor growth was evaluated by animal studies.ResultsCircHMCU was upregulated in BC tissues and cell lines, whereas miR-4458 was downregulated. For biological experiments, circHMCU knockdown inhibited cell proliferation, migration, glycolysis, while promoted cell apoptosis. CircHMCU bound miR-4458, and miR-4458 targeted PGK1. MiR-4458 inhibition reversed circHMCM knockdown-mediated effects on BC cell malignant behaviors. MiR-4458 overexpression suppressed cell glycolysis, proliferation, and metastasis and promoted apoptosis in BC cells through PGK1 upregulation. Additionally, circHMCU suppressed tumor growth in vivo.ConclusionCircHMCU acted as an oncogenic factor by regulating the miR-4458/PGK1 axis in BC.
Project description:BackgroundUltrafiltration (UF) volume and peritoneal solute transport rate (PSTR) are common parameters used to evaluate the efficacy of peritoneal dialysis (PD) on individual patients. It is unclear whether the level of exosomal microRNA (miRNA) in peritoneal dialysis effluent (PDE) can predict UF or PSTR. This study was designed to investigate if there is a correlation between PDE exosomal miRNA (miR-432-5p) levels and various UF volumes and PSTRs in PD patients. It also aimed to explore the underlying mechanism of water and dialytic sodium removal (DSR).MethodsThe PSTR was quantified using the 4-hour (4 h) 3.86% dialysate to plasma creatinine ratio. The PDE exosomes (PDE-exo) were isolated by ultracentrifugation. An miRNA assay was used to identify the different miRNA in the PDE-exo of patients in a high (H; PSTR >0.65, n=5) and low (L; PSTR <0.65, n=5) group. We focused on miR-432-5p as bioinformatic analysis had shown that it could be involved in sodium transport. We used mimic/inhibitor transfection and dual luciferase reporter assay to verify the target genes of miR-432-5p. We used PKH-67 stained PDE-exo to observe their interaction with human MeT-5A mesothelial cells.ResultsOur results showed that the PDE-exo-miR-432-5p level was higher in group H than in group L. The levels of PDE-exo-miR-432-5p were positively correlated with PSTR (r=0.391; P<0.05; n=40) and negatively correlated with the 4 h UF volume (r=-0.376; P<0.05; n=40) and 4 h DSR (r=-0.535; P<0.01; n=24). Epithelial sodium channel α subunit (α-ENaC) was revealed as a direct target gene of miR-432-5p and expressed on both human peritoneum and MeT-5A cells. Furthermore, we found the PKH67 labeled-PDE-exo could be internalized into MeT-5A cells.ConclusionsA high PDE-exo-miR-432-5p level was associated with poor UF volume and DSR. It may be that PDE-exo-miR-432-5p affects DSR through downregulating α-ENaC expression.
Project description:Study designExperimental analysis of circular RNA in intervertebral disk degeneration (IDD).ObjectiveThis study aimed to explore the roles of hsa_circ_0001946 (circ-CDR1as) in mechanical stress-induced nucleus pulposus cell injury in IDD.Summary of background dataMechanical stress is an important pathogenic factor for IDD. Excessive compression stress leads to nucleus pulposus (NP) cell apoptosis and extracellular matrix (ECM) degradation and accelerated IDD. Circ-CDR1as is associated with various degenerative conditions, but its role in IDD is not clear. Herein, we explored the roles and mechanisms of circ-CDR1as in IDD in vitro.Materials and methodsAn in vitro model of IDD was constructed by treating NP cells with 1.0 MPa compression stress. Quantitative real-time polymerase chain reaction assay was used for detecting the expression of circ-CDR1as and miR-432-5p. Immunofluorescent analysis was performed for MMP13 detection. Western blot assay was performed for detecting apoptosis and ECM-related protein expression. Flow cytometry analysis was used for cell apoptosis analysis. The dual-luciferase reporter was used to analyze the interaction between miR-432-5p and circ-CDR1as or SOX9. Differences in means between groups were evaluated using the Student t test or one-way analysis of variance.ResultsIn compression-treated human NP cells, we found that circ-CDR1as was significantly downregulated. Functional experiments showed that circ-CDR1as overexpression reduced the compression-induced apoptosis and ECM degradation in NP cells. Further research indicated that circ-CDR1as could act as a molecular sponge for miR-432-5p, a miRNA that enhanced compression-induced damage of NP cells by inhibiting the expression of SOX9. The luciferase reporter experiments also showed that the mutual dialogue between circ-CDR1as and miR-432-5p regulated the expression of SOX9.ConclusionsCirc-CDR1as binds to miR-432-5p and plays a protective role in mitigating compression-induced NP cell apoptosis and ECM degradation by targeting SOX9. Circ-CDR1as may provide a novel therapeutic target for the clinical management of IDD in the future.
Project description:ObjectiveThis study aims to explore the mechanism of the miR-424-5p/E2F7 axis in hepatocellular carcinoma (HCC) and provide new ideas for targeted therapy of HCC.MethodsBioinformatics analysis was used to identify the target differentially expressed miRNA in HCC and predict its target gene. qRT-PCR was employed to verify the expression of miR-424-5p and E2F7 mRNA in HCC cells. Western blot was performed to detect the effect of miR-424-5p ectopic expression on the protein expression of E2F7. CCK-8 was used to detect proliferative activity of HCC cells and flow cytometry was carried out for analyzing cell cycle distribution. Dual luciferase reporter assay was conducted to verify the direct targeting relationship between miR-424-5p and E2F7.ResultsWe observed that miR-424-5p was down-regulated in HCC cells. CCK-8 showed that overexpression of miR-424-5p inhibited cell proliferation, and flow cytometry showed that miR-424-5p could block cells in G0/G1 phase. E2F7 was up-regulated in HCC cells, and E2F7 overexpression could facilitate the proliferative ability of HCC cells and promote the cell cycle progressing from G0/G1 to S phase. Furthermore, dual-luciferase reporter assay indicated that miR-424-5p could directly down-regulate E2F7 expression. Analysis on cell function demonstrated that miR-424-5p inhibited the proliferation of HCC cells and blocked cell cycle at G0/G1 phase by targeting E2F7.ConclusionOur results proved that E2F7 was a direct target of miR-424-5p, and miR-424-5p could regulate cell cycle and further inhibit the proliferation of HCC cells by targeting E2F7.