Project description:Nucleolar and spindle-associated protein 1 (NUSAP1) is a microtubule-associated protein that plays a crucial role in mitosis. Despite initial reports suggesting a potential involvement of NUSAP1 in tumor progression and malignant cell regulation, there has been no systematic analysis of its role in the tumor immune microenvironment, nor its predictive value for prognosis and immunotherapy response across different cancer types. In this study, we analyze NUSAP1 mRNA and protein expression levels in various human normal and tumor tissues, using data from TCGA, GTEx, CPTAC, HPA databases, and clinical samples. Our findings reveal that NUSAP1 is highly expressed in multiple tumor tissues across most cancer types and is primarily expressed in malignant and immune cells, according to single-cell sequencing data from the TISCH database. Prognostic analysis based on curated survival data from the TCGA database indicates that NUSAP1 expression levels can predict clinical outcomes for 26 cancer types. Furthermore, Gene Set Enrichment Analysis (GSEA) suggests that NUSAP1 promotes cell proliferation, tumor cell invasion, and regulation of anti-tumor response. Analysis of immune score, immune cell infiltration, and anti-cancer immunity cycle using ESTIMATE, TIMER, and TIP databases show that high NUSAP1 levels are associated with low CD4+T and NKT cell infiltration but high Th2 and MDSC infiltration, inversely correlated with antigen-presenting molecules and positively correlated with a variety of immune negative regulatory molecules. Notably, patients with melanoma, lung, and kidney cancer with high NUSAP1 expression levels have shorter survival times and lower immunotherapy response rates. Using Cmap analysis, we identify Entinostat and AACOCF3 as potential inhibitors of NUSAP1-mediated pro-oncogenic effects. In vitro and in vivo experiments further confirm that NUSAP1 knockdown significantly reduces the proliferation ability of A549 and MCF-7 cells. Overall, our study highlights the potential of NUSAP1 expression as a novel biomarker for predicting prognosis and immuno-therapeutic efficacy across different human cancers and suggests its potential for developing novel antitumor drugs or improving immunotherapy.
Project description:BackgroundR3HDM1, an RNA binding protein with one R3H domain, remains uncharacterized in terms of its association with tumor progression, malignant cell regulation, and the tumor immune microenvironment. This paper aims to fill this gap by analyzing the potential of R3HDM1 in diagnosis, prognosis, chemotherapy, and immune function across various cancers.MethodsData was collected from the Firehost database (http://gdac.broadinstitute.org) to obtain the TCGA pan-cancer queue containing tumor and normal samples. Additional data on miRNA, TCPA, mutations, and clinical information were gathered from the UCSC Xena database (https://xenabrowser.net/datapages/). The mutation frequency and locus of R3HDM1 in the TCGA database were examined using the cBioPortal. External validation through GEO data was conducted to assess the differential expression of R3HDM1 in different cancers. Protein expression levels were evaluated using the Clinical Proteomics Tumor Analysis Alliance (CPTAC). The differential expression of R3HDM1 was verified in lung adenocarcinoma cell lines and normal lung glandular epithelial cells via RT-qPCR. Cell migration and proliferation experiments were conducted by knocking down the expression of R3HDM1 in two lung adenocarcinoma cell lines using small interfering RNA. The biological role of R3HDM1 in pan-cancer was explored using the GSEA method. Multiple immune infiltration algorithms from the TIMER2.0 database was employed to investigate the correlation between R3HDM1 expression and the tumor immune microenvironment. Validation of transcriptome immune infiltration was based on 140 single-cell datasets from the TISCH database. The study also characterized a pan-cancer survival profile and analyzed the differential expression of R3HDM1 in different molecular subtypes. The relationship between R3HDM1 and drug resistance was investigated using four chemotherapy data sources: CellMiner, GDSC, CTRP and PRISM. The impact of chemicals on the expression of R3HDM1 was explored through the CTD database.ResultThe study revealed differential expression of R3HDM1 in various tumors, indicating its potential as an early diagnostic marker. Changes in somatic copy number (SCNA) and DNA methylation were identified as factors contributing to abnormal expression levels. Additionally, the study found that R3HDM1 expression is associated with clinical features, metabolic pathways, and important pathways related to metastasis and the immune system. High expression of R3HDM1 was linked to poor prognosis across different tumors and altered drug sensitivity. Furthermore, the expression of R3HDM1 showed significant correlations with immune modulatory molecules and biomarkers of lymphocyte subpopulation infiltration. Finally, the study highlighted four chemicals that could influence the expression of R3HDM1.ConclusionOverall, this study proposes that R3HDM1 expression is a promising biomarker for predicting the prognosis of cancer, especially lung adenocarcinoma, and the efficacy of immunotherapy, demonstrating the rationale for further exploration in the development of anti-tumor therapies.
Project description:BackgroundApoptosis Regulator BCL2 Associated X (BAX) is a pro-apoptotic gene. Apoptosis is one of the important components of immune response and immune regulation. However, there is no systematic pan-cancer analysis of BAX.MethodsOriginal data of this study were downloaded from TCGA databases and GTEX databases. We conducted the gene expression analysis and survival analysis of BAX in 33 types of cancer via Gene Expression Profiling Interactive Analysis (GEPIA) database. Real-time PCR and immunohistochemistry (IHC) were further performed to examine the BAX expression in cancer cells and tissues. Moreover, the relationship between BAX and immune infiltration and gene alteration was studied by the Tumor Immune Estimation Resource (TIMER) and cBioPortal tools. Protein-protein interaction analysis was performed in the STRING database. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to evaluate the enrichment analysis.ResultsBAX was highly expressed in most cancers and was associated with poor prognosis in nine cancer types. In addition, BAX showed significant clinical relevance, and the mRNA expression of BAX was also strongly associated with drug sensitivity of many drugs. Furthermore, BAX may participate in proliferation and metastasis of many cancers and was associated with methylation. Importantly, BAX expression was positively correlated with most immune infiltrating cells.ConclusionOur findings suggested that BAX can function as an oncogene and may be used as a potential predictive biomarker for prognosis and immunotherapy efficacy of human cancer, which could provide a new approach for cancer therapy.
Project description:PANoptosis, a programmed cell death, shares key characteristics of apoptosis, pyroptosis, and necroptosis. Accumulating evidence suggests that PANoptosis plays a crucial role in tumorigenesis. However, the respective regulation mechanisms in cancer are so far unclear. Using various bioinformatic approaches, we comprehensively analyzed the expression patterns, genetic alterations, prognostic value, and immunological role of PANoptosis genes in pan-cancer. Expression of the PANoptosis gene, PYCARD, was validated based on the Human Protein Atlas database and real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). We found that PANoptosis genes were aberrantly expressed in most cancer types, which was consistent with the validation of PYCARD expression. Concurrently, PANoptosis genes and PANoptosis scores were significantly associated with patient survival in 21 and 14 cancer types, respectively. Pathway analysis showed that PANoptosis score was positively correlated with pathways linked to immune and inflammatory responses in pan-cancer, such as IL6-JAK-STAT3 signaling, the interferon-gamma response, and IL2-STAT5 signaling. In addition, the PANoptosis score was significantly correlated with the tumor microenvironment, the infiltration levels of most immune cells (i.e.NK cells, CD8+ T cells, CD4+ T cells, DC cells), and immune-related genes. Furthermore, it was a predictive indicator of immunotherapy response in patients with tumors. These insights substantially improve our understanding of PANoptosis components in cancers and may inspire the discovery of novel prognostic and immunotherapy response biomarkers.
Project description:BackgroundNew immunotherapeutic strategies based on predictors are urgently needed. Toll-like receptor adaptor interacting with SLC15A4 on the lysosome (TASL) was recently confirmed to fulfill an important role in the innate immune response. However, whether TASL is involved in tumor development and immunotherapy response prediction has not been reported.MethodsTCGA and GTEx were used to yield transcriptional, genetic, and epigenetic levels of TASL in 33 cancer types. CIBERSORT was used to explore the correlation between TASL expression and multiple immune-related signatures and tumor-infiltrating immune cell content in different cancer types. The ability of TASL to predict tumor immunotherapy response was analyzed in seven datasets. Finally, we tested TASL expression in human glioma cell lines and tissue samples and analyzed its correlation with clinicopathological parameters.ResultsTASL is widely heterogeneous at the transcriptional, genetic, and epigenetic levels. High TASL expression is an independent poor prognostic factor for immune "cold" tumor Low-Grade Glioma (LGG) but an opposite factor for "hot" tumors Lung Adenocarcinoma (LUAD) and Skin Cutaneous Melanoma (SKCM). TASL may affect tumor immune infiltration by mediating tumor-infiltrating lymphocytes and tumor-associated macrophages. It may differentially affect the prognosis of the three cancers by regulating the immunosuppressive microenvironment in LGG and the immunostimulatory microenvironment in LUAD and SKCM. High TASL expression is a potential biomarker for the positive response to immunotherapy in cancers such as SKCM and was also experimentally confirmed to be positively associated with adverse clinicopathological features of gliomas.ConclusionTASL expression is an independent prognostic factor for LGG, LUAD, and SKCM. High TASL expression is a potential biomarker for the positive response to immunotherapy in certain cancer types such as SKCM. Further basic studies focusing on TASL expression and tumor immunotherapy are urgently needed.
Project description:The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.0, KM-Plotter, cBioPortal, ImmuCellAI. We investigated correlations between ZNF32 expression and various factors such as prognosis, immune infiltration, immunotherapy, DNA methylation, and biological functions. Furthermore, we performed in vitro research to validate the significance of ZNF32 in head and neck cancer (HNSC). Our study revealed that ZNF32 was high in various types of cancer, including ACC, BRCA, and others, indicating its important potential as a prognostic biomarker. Significant changes in CNA and DNA methylation were associated with high ZNF32 expression. ZNF32 was notably linked to various immune characteristics, including immune cell infiltration, MSI, TMB and immune checkpoint gene expression, indicating its potential in informing immunotherapy approaches. Interestingly, in FaDu and CAL27 cell lines, the group with elevated ZNF32 expression exhibited increased levels of immune checkpoint markers, such as CTLA-4 and PD-L1. Overexpression of ZNF32 significantly enhanced proliferation and migration in FaDu and CAL27 cell lines, as demonstrated through CCK-8 assays, colony formation, flow cytometry, Transwell migration, and Boyden invasion assays. Our in vitro experiments confirmed that ZNF32 promotes malignant behavior by driving HNSC cell proliferation and migration. These results imply that ZNF32 might be a promising target for tumor prognosis and immunotherapy. Our results highlight the important role of ZNF32 in tumorigenesis and provide novel perspectives for potential cancer treatment strategies.
Project description:BackgroundTransporter associated with antigen processing 1 (TAP1) is a molecule involved in processing and presentation of major histocompatibility complex class I restricted antigens, including tumor-associated antigens. TAP1 participates in tumor immunity, and is aberrantly expressed in multiple cancer types; METHODS: Transcriptome profiles were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression databases. Genetic alterations, protein distribution, and interaction information for TAP1 were downloaded from cBioPortal, Human Protein Atlas and Compartmentalized Protein-Protein Interaction, respectively. Single-cell analyses of TAP1 across cancers were conducted via the Tumor Immune Single-cell Hub website. Gene set enrichment analysis was employed to investigate TAP1-associated functional mechanisms and processes. Immune cell infiltration was explored using Tumor Immune Estimation Resource 2.0. Pan-cancer correlations between TAP1 expression and immunotherapy biomarkers were explored using the Spearman's correlation test. Associations with immunotherapy responses were also investigated using clinicopathological and prognostic information from cohorts of patients with cancer receiving immune checkpoint inhibitors.ResultsTAP1 expression was elevated in most cancer types and exhibited distinct prognostic value. Immune cells expressed more TAP1 than malignant cells within most tumors. TAP1 expression was significantly correlated with immune-related pathways, T-lymphocyte infiltration, and immunotherapeutic biomarkers. Clinical cohort validation revealed a significant correlation with immune therapeutic effects and verified the prognostic role of TAP1 in immunotherapy. Western blot assay indicated that TAP1 is upregulated in glioblastoma compared with adjacent normal brain tissues.ConclusionTAP1 is a robust tumor prognostic biomarker and a novel predictor of clinical prognosis and immunotherapeutic responses in various cancer types.
Project description:Lipoic acid synthetase (LIAS) has been demonstrated to play a crucial role in the progression of cancer. Exploring the underlying mechanisms and biological functions of LIAS could have potential therapeutic guidance for cancer treatment. Our study has explored the expression levels and prognostic values of LIAS in pan-cancer through several bioinformatics platforms, including TIMER2.0, Gene Expression Profiling Interactive Analysis, version 2 (GEPIA2.0), and Human Protein Atlas (HPA). We found that a high LIAS expression was related to the good prognosis in patients with kidney renal clear cell carcinoma (KIRC), rectum adenocarcinoma (READ), breast cancer, and ovarian cancer. Inversely, a high LIAS expression showed unfavorable prognosis in lung cancer patients. In addition, the genetic alteration, methylation levels, and immune analysis of LIAS in pan-cancer have been evaluated. To elucidate the underlying molecular mechanism of LIAS, we conduct the single-cell sequencing to implicate that LIAS expression was related to hypoxia, angiogenesis, and DNA repair. Thus, these comprehensive pan-cancer analyses have conveyed that LIAS could be potentially significant in the progression of various cancers. Moreover, the LIAS expression could predict the efficacy of immunotherapy in cancer patients.
Project description:Small nucleolar RNA host genes (SNHGs) are a special family of long non-coding RNAs (lncRNAs), which not only function in a way similar to other lncRNAs but also influence the intracellular level of small nucleolar RNAs to modulate cancers. However, the features of SNHGs and their role in the prognosis and immunotherapeutic response of human cancer have not been explored. We found that SNHGs were commonly deregulated and correlated with patient survival in various cancers. The critical role of DNA methylation and somatic alterations on deregulation was also identified. SNHG family score was significantly associated with survival, multiple tumor characteristics, and tumor microenvironment. SNHG-related risk score could serve as a prognostic and immunotherapeutic response biomarker based on multiple databases. This study emphasizes the potential of SNHGs as biomarkers for prognosis and immunotherapeutic response, enabling further research into the immune regulatory mechanism and therapeutic potentials of SNHGs in cancer.
Project description:Background: The rapid development of immunotherapy has significantly improved patient outcomes in recent years. CD93, a novel biomarker expressed on vascular endothelial cells, is essential for tumor angiogenesis. Recent studies have shown that CD93 is closely related to immune cell infiltration and immunotherapy. However, its role in pan-cancer has not been reported. Methods: The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), cbioportal, Gene Expression Omnibus (GEO), Tumor Immune Estimation Resource (TIMER2.0), and the Tumor-Immune System Interactions and Drug Bank (TISIDB) databases were used to analyze CD93 in pan-cancers. R software was used for statistical analysis and mapping. Results: There were significant differences in the expression of CD93 between tumor tissues and adjacent normal tissues in pan-cancer. The high expression of CD93 was associated with poor prognosis and high TNM stage in multiple tumor types. However, a high expression of CD93 was a protective factor in kidney renal clear cell carcinoma (KIRC). In addition, CD93 was closely related to immune cell infiltration in tumor tissues. Moreover, CD93 presented a robust correlation with immune modulators and immunotherapeutic markers [e.g., tumor mutation burden (TMB) and microsatellite instability (MSI)]. The results of gene set enrichment analysis (GSEA) showed that CD93 was correlated with tumor angiogenesis. Importantly, patients with a low expression of CD93 were more sensitive to immunotherapy in urothelial cancer. Conclusion: CD93, which is involved in various immune responses, controls immune cell infiltration and impacts on the malignant properties of various cancer types. Therefore, CD93 has potential value to be biomarker for determining the prognosis and immune infiltration in multiple cancers.