Project description:BackgroundThe incidence of esophageal squamous cell carcinoma in China ranks first in the world. The early diagnosis technology is underdeveloped, and the prognosis is poor, which seriously threatens the quality of life of the Chinese people. Epidemiological findings are related to factors such as diet, living habits, and age. The specific mechanism is not clear yet. Metabolomics is a kind of omics that simultaneously and quantitatively analyzes the comprehensive profile of metabolites in living systems. It has unique advantages in the study of the diagnosis and pathogenesis of tumor-related diseases, especially in the search for biomarkers. Therefore, it is desirable to perform metabolic profiling analysis of cancer tissues through metabolomics to find potential biomarkers for the diagnosis and treatment of esophageal squamous cell carcinoma.MethodsHPLC-TOF-MS/MS technology and Illumina Hiseq Xten Sequencing was used for the analysis of 210 pairs of matched esophageal squamous cell carcinoma tissues and normal tissues in Zhenjiang City, Jiangsu Province, a high-incidence area of esophageal cancer in China. Bioinformatics analysis was also performed.ResultsThrough metabolomic and transcriptomic analysis, this study found that a total of 269 differential metabolites were obtained in esophageal squamous cell carcinoma and normal tissues, and 48 differential metabolic pathways were obtained through KEGG enrichment analysis. After further screening and identification, 12 metabolites with potential biomarkers to differentiate esophageal squamous cell carcinoma from normal tissues were obtained.ConclusionsFrom the metabolomic data, 4 unknown compounds were found to be abnormally expressed in esophageal squamous cell carcinoma for the first time, such as 9,10-epoxy-12,15-octadecadienoate; 3 metabolites were found in multiple abnormal expression in another tumor, but upregulation or downregulation was found for the first time in esophageal cancer, such as oleoyl glycine; at the same time, it was further confirmed that five metabolites were abnormally expressed in esophageal squamous cell carcinoma, which was similar to the results of other studies, such as PE.
Project description:Next-generation sequencing and bioinformatics analyses have clearly revealed the roles of mitochondrial ribosomal genes in cancer development. Mitochondrial ribosomes are composed of three RNA components encoded by mitochondrial DNA and 82 specific protein components encoded by nuclear DNA. They synthesize mitochondrial inner membrane oxidative phosphorylation (OXPHOS)-related proteins and participate in various biological activities via the regulation of energy metabolism and apoptosis. Mitochondrial ribosomal genes are strongly associated with clinical features such as prognosis and foci metastasis in patients with cancer. Accordingly, mitochondrial ribosomes have become an important focus of cancer research. We review recent advances in bioinformatics research that have explored the link between mitochondrial ribosomes and cancer, with a focus on the potential of mitochondrial ribosomal genes as biomarkers in cancer.
Project description:Epithelial ovarian cancer (EOC) are a heterogeneous collection of malignancies, each with their own developmental origins, clinical behavior and molecular profile. With less than 5% of EOC cases, mucinous ovarian carcinoma is a rare form with a poor prognosis with a 5-year survival of 11% for advanced stages (III/IV). Clinically, due to the large size and heterogeneity of mu-cinous tumors, Malignant forms are difficult to distinguish from Borderline (15%) and benign (80%) forms with a better prognosis. Improving their diagnosis is therefore a challenge with regard to the risk of under-treating a malignant form or of unnecessarily undertaking radical surgical excision. The involvement of microRNAs (miRNAs) in cancer and their potential as biomarkers of diagnosis are becoming increasingly recognized. In this study, miRNA expres-sion profiling generates using FFPE patient samples followed by qRT-PCR validation allows to identify 10 down-regulated and 5 up-regulated miRNAs between Malignant and Borderline tumors. To overcome issues linked to data normalization and to improve the accuracy of the results, a ratio analysis combining up-regulated and down-regulated miRNAs was used. Alt-hough 21/50 miRNA expression ratio were significantly different between Malignant and Bor-derline tumor samples, any ratio could perfectly discriminate the two groups. However, a combination of 14 miRNAs expression ratio (double ratio) showed high discriminatory poten-tial, with 100% of accuracy in distinguishing Malignant and Borderline ovarian tumors, and suggests that miRNAs may hold significant clinical potential as a diagnostic tool. Epithelial ovarian cancer (EOC) are a heterogeneous collection of malignancies, each with their own developmental origins, clinical behavior and molecular profile. With less than 5% of EOC cases, mucinous ovarian carcinoma is a rare form with a poor prognosis with a 5-year survival of 11% for advanced stages (III/IV). Clinically, due to the large size and heterogeneity of mu-cinous tumors, Malignant forms are difficult to distinguish from Borderline (15%) and benign (80%) forms with a better prognosis. Improving their diagnosis is therefore a challenge with regard to the risk of under-treating a malignant form or of unnecessarily undertaking radical surgical excision. The involvement of microRNAs (miRNAs) in cancer and their potential as biomarkers of diagnosis are becoming increasingly recognized. In this study, miRNA expres-sion profiling generates using FFPE patient samples followed by qRT-PCR validation allows to identify 10 down-regulated and 5 up-regulated miRNAs between Malignant and Borderline tumors. To overcome issues linked to data normalization and to improve the accuracy of the results, a ratio analysis combining up-regulated and down-regulated miRNAs was used. Alt-hough 21/50 miRNA expression ratio were significantly different between Malignant and Bor-derline tumor samples, any ratio could perfectly discriminate the two groups. However, a combination of 14 miRNAs expression ratio (double ratio) showed high discriminatory poten-tial, with 100% of accuracy in distinguishing Malignant and Borderline ovarian tumors, and suggests that miRNAs may hold significant clinical potential as a diagnostic tool.
Project description:Background: The diagnosis of acute appendicitis can be surprisingly difficult without computed tomography, which carries significant radiation exposure. Genome-wide expression profiling was applied to whole blood RNA of acute appendicitis patients versus patients with other abdominal disorders, in order to identify biomarkers of appendicitis. From a large cohort of emergency patients, a discovery set of patients with surgically confirmed appendicitis, or abdominal pain from other causes, was identified. RNA from whole blood was profiled by microarrays, and RNA levels were filtered by a combined fold-change (>2) and p value (<0.05). A separate set of patients, including patients with respiratory infections, was used to validate a partial least squares discriminant (PLSD) prediction model. Results: Transcript profiling identified 37 differentially expressed genes (DEG) in appendicitis versus abdominal pain patients. The DEG list contained 3 major ontologies: infection-related, inflammation-related, and ribosomal processing. Appendicitis patients had lower level of neutrophil defensin mRNA (DEFA1,3), but higher levels of alkaline phosphatase (ALPL) and interleukin-8 receptor-ß (IL8RB), which was confirmed in a larger cohort of 60 patients using droplet digital PCR (ddPCR). Conclusions: Patients with acute appendicitis have detectable changes in the mRNA expression levels of factors related to neutrophil inate defense systems. The low defensin mRNA levels suggest that appendicitis patient's immune cells are not directly activated by pathogens, but are primed by diffusible factors in the microenvironment of the infection. The detected biomarkers are consistent with prior evidence that biofilm-forming bacteria in the appendix may be an important factor in appendicitis.
Project description:Gastric cancer (GC) is the fourth most common cancer worldwide and ranks second in global cancer mortality statistics. Perioperative chemotherapy plays an important role in the management and treatment of advanced stage disease. However, response to chemotherapy varies widely, with some patients presenting no or only minor response to treatment. Hence, chemotherapy resistance is a major clinical problem that impacts on outcome. Unfortunately, to date there are no reliable biomarkers available that predict response to chemotherapy before the start of the treatment, or that allow modification of chemotherapy resistance. MicroRNAs (miRNAs) could provide an answer to this problem. miRNAs are involved in the initiation and progression of a variety of cancer types, and there is evidence that miRNAs impact on resistance towards chemotherapeutic drugs as well. This current review aims to provide an overview about the potential clinical applicability of miRNAs as biomarkers for chemoresistance in GC. The authors focus in this context on the potential of miRNAs to predict sensitivity towards different chemotherapeutics, and on the potential of miRNAs to modulate sensitivity and resistance towards chemotherapy in GC.
Project description:In a multivariate setting, we consider the task of identifying features whose correlations with the other features differ across conditions. Such correlation shifts may occur independently of mean shifts, or differences in the means of the individual features across conditions. Previous approaches for detecting correlation shifts consider features simultaneously, by computing a correlation-based test statistic for each feature. However, since correlations involve two features, such approaches do not lend themselves to identifying which feature is the culprit. In this article, we instead consider a serial testing approach, by comparing columns of the sample correlation matrix across two conditions, and removing one feature at a time. Our method provides a novel perspective and favorable empirical results compared with competing approaches.
Project description:BackgroundSerum exosomes are emerging as key liquid biopsy biomarkers for the early diagnosis of cancer. However, the proportion and distribution of small RNA (sRNA) species from serum exosomes of hepatocellular carcinoma (HCC) patients remain unclear. Effective and reliable biomarkers for HCC diagnosis should be explored.MethodsIn this study, we aimed to use sRNA sequencing to profile the sRNAs of serum exosomes in HCC and non-tumor donors. The serum exosomes of 124 HCC patients and 46 non-tumor donors were enrolled for detecting the values of the potential biomarkers for the diagnosis of HCC.ResultsWe found that miRNAs accounted for the maximal percentage of all types of sRNAs both in the serum exosomes of HCC patients and non-tumor donors. This indicated that the serum-exosome-derived microRNAs (miRNAs) were the most valuable as potential biomarkers in HCC diagnosis. Then, miRNAs were set as research candidates. In our Chinese cohorts, three serum-exosome-derived miRNAs (miR-122-5p, let-7d-5p, and miR-425-5p) could be promising biomarkers for distinguishing HCC patients from non-tumor donors. In addition, they were preferred for the early diagnosis of HCC. We also presented the base distribution of some novel serum-exosome-derived miRNAs and described the potential values as biomarkers.ConclusionsThe results suggested that the serum-exosome-derived miRNAs were the most crucial sRNA species and they highlighted the potential of serum-exosome-derived miRNAs as promising biomarkers for HCC diagnosis.
Project description:BackgroundApoptosis-associated biomarkers are rarely studied, especially their role in predicting the development of tuberculosis (TB) from latent TB infection and in prognostication.MethodsPatients with TB and interferon-gamma release assay (IGRA)-positive and IGRA-negative family contacts were evaluated to analyze changes in apoptosis-associated serum biomarkers, which included decoy receptor 3 (DcR3), prostaglandin 2 (PGE2), and lipoxin. The prognostic implications of these serum biomarkers were also analyzed.ResultsOne hundred TB patients and 92 IGRA-negative and 91 IGRA-positive family contacts were recruited. The DcR3 and PGE2 levels decreased from the IGRA-negative group to the IGRA-positive group, and peaked in the TB group. Lipoxin decreased to trough in the TB group. The three apoptosis serum markers and age were independent factors discriminating active TB from latent TB infection. In active TB, older age, co-morbidity, and higher serum DcR3 and monocyte chemotactic protein (MCP)-1 were independently associated with poorer six-month survival.ConclusionApoptosis-associated serum biomarkers change along with the status of Mycobacterium tuberculosis infection. In close contacts with positive IGRA, high DcR3 and PGE2 and low lipoxin may increase the probability of active TB. Older age, co-morbidity, and high DcR3 and MCP-1 levels might be important prognostic factors that warrant further investigation.
Project description:BackgroundPrimary mitochondrial disorders (PMDs) are a diagnostic challenge for paediatricians, and identification of reliable and easily measurable biomarkers has become a high priority. This study aimed to investigate the role of serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) in children with PMDs.MethodsWe analysed serum FGF21 and GDF15 concentrations by enzyme-linked immunosorbent assay (ELISA) in children with PMDs, patients with non-mitochondrial neuromuscular disorders (NMDs), and aged-matched healthy children, and compared them with serum lactate and ratio of lactate and pyruvate (L/P). We also evaluated correlations between these biomarkers and the phenotype, genotype, and severity of PMDs.ResultsThe median serum GDF15 and FGF21 concentrations were significantly elevated in fifty-one patients with PMDs (919.46 pg/ml and 281.3 pg/ml) compared with those of thirty patients with NMDs (294.86 pg/ml and 140.51 pg/ml, both P < 0.05) and fifty healthy controls (221.21 pg/ml and 85.02 pg/ml, both P < 0.05). The area under the curve of GDF15 for the diagnosis of PMDs was 0.891, which was higher than that of the other biomarkers, including FGF21 (0.814), lactate (0.863) and L/P ratio (0.671). Calculated by the maximum Youden index, the critical value of GDF15 was 606.369 pg/ml, and corresponding sensitivity and specificity were 74.5and 100%. In the PMD group, FGF21 was significantly correlated with International Paediatric Mitochondrial Disease Scale (IPMDS) score. The levels of GDF15 and FGF21 were positively correlated with age, critical illness condition, and multisystem involvement but were not correlated with syndromic/non-syndromic PMDs, different mitochondrial syndromes, nuclear DNA/mitochondrial DNA pathogenic variants, gene functions, or different organ/system involvement.ConclusionRegardless of clinical phenotype and genotype, circulating GDF15 and FGF21 are reliable biomarkers for children with PMDs. GDF15 can serve as a screening biomarker for diagnosis, and FGF21 can serve as a severity biomarker for monitoring.
Project description:Background: Obesity is a risk factor that negatively impacts outcomes in patients undergoing heart surgery by mechanisms that are not well-defined nor predicated on BMI alone. This knowledge gap has fuelled a search for biomarkers associated with cardiovascular diseases that could provide clinical insight to surgeons. One such biomarker is growth differentiation factor15(GDF15), associated with inflammation, metabolism, and heart failure outcomes but not yet examined in the context of obesity and cardiac surgery outcomes. Methods: Patients undergoing open-heart surgery were consented and enrolled for blood and tissue (atria) sampling at the time of surgery. Biomarker analysis was carried out using ELISA and western blot/qPCR, respectively. Biomarker screening was classified by inflammation(NLR, GDF15, Galectin3, ST2, TNFR2), heart failure(HF)/remodeling(NT-proBNP) and metabolism(glycemia, lipid profile). Patients were categorized based on BMI: obese group (BMI ≥30.0) and non-obese group(BMI 20.0-29.9). Subsequent stratification of GDF15 high patients was conservatively set as being in the 75th percentile. Results: A total of 80 patients undergoing any open-heart surgical interventions were included in the study. Obese (mean BMI = 35.8, n = 38) and non-obese (mean BMI = 25.7, n = 42) groups had no significant differences in age, sex, or co-morbidities. Compared to other biomarkers, plasma GDF15 (mean 1,736 vs. 1,207 ng/l, p < 0.001) was significantly higher in obese patients compared to non-obese. Plasma GDF15 also displayed a significant linear correlation with BMI (R 2 = 0.097; p = 0.0049). Atria tissue was shown to be a significant source of GDF15 protein and tissue levels significantly correlated with plasma GDF15 (R 2 = 0.4, p = 0.0004). Obesity was not associated with early/late mortality at median follow-up >2years. However, patients with high GDF15 (>1,580 ng/l) had reduced survival (65%) compared to the remaining patients with lower GDF15 levels (95%) by Kaplan Meier Analysis (median >2 years; p = 0.007). Conclusions: Circulating GDF15 is a salient biomarker likely sourced from heart tissue that appears to predict higher risk obese patients for adverse outcomes. More importantly, elevated GDF15 accounted for more sensitive outcome association than BMI at 2 years post-cardiac surgery, suggesting it heralds links to pathogenicity and should be actively studied prospectively and dynamically in a post-operative follow-up. Trial number: NCT03248921.