Unknown

Dataset Information

0

Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury.


ABSTRACT: Traumatic brain injury (TBI) causes neuronal apoptosis, inflammation, and reactive astrogliosis, which contribute to secondary tissue loss, impaired regeneration, and associated functional disabilities. Here, we show that up-regulation of cell cycle components is associated with caspase-mediated neuronal apoptosis and glial proliferation after TBI in rats. In primary neuronal and astrocyte cultures, cell cycle inhibition (including the cyclin-dependent kinase inhibitors flavopiridol, roscovitine, and olomoucine) reduced up-regulation of cell cycle proteins, limited neuronal cell death after etoposide-induced DNA damage, and attenuated astrocyte proliferation. After TBI in rats, flavopiridol reduced cyclin D1 expression in neurons and glia in ipsilateral cortex and hippocampus. Treatment also decreased neuronal cell death and lesion volume, reduced astroglial scar formation and microglial activation, and improved motor and cognitive recovery. The ability of cell cycle inhibition to decrease both neuronal cell death and reactive gliosis after experimental TBI suggests that this treatment approach may be useful clinically.

SUBMITTER: Di Giovanni S 

PROVIDER: S-EPMC1149422 | biostudies-literature | 2005 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury.

Di Giovanni Simone S   Movsesyan Vilen V   Ahmed Farid F   Cernak Ibolja I   Schinelli Sergio S   Stoica Bogdan B   Faden Alan I AI  

Proceedings of the National Academy of Sciences of the United States of America 20050527 23


Traumatic brain injury (TBI) causes neuronal apoptosis, inflammation, and reactive astrogliosis, which contribute to secondary tissue loss, impaired regeneration, and associated functional disabilities. Here, we show that up-regulation of cell cycle components is associated with caspase-mediated neuronal apoptosis and glial proliferation after TBI in rats. In primary neuronal and astrocyte cultures, cell cycle inhibition (including the cyclin-dependent kinase inhibitors flavopiridol, roscovitine  ...[more]

Similar Datasets

| S-EPMC4317684 | biostudies-literature
| S-EPMC4808298 | biostudies-literature
| S-EPMC3324621 | biostudies-literature
| S-EPMC6403346 | biostudies-literature
| S-EPMC2752951 | biostudies-literature
| S-EPMC5260471 | biostudies-literature
| S-EPMC5523726 | biostudies-other
| S-EPMC5551705 | biostudies-literature
| S-EPMC5561940 | biostudies-other