Project description:Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We used this technique in an attempt to identify novel genes underlying monogenic dyslipidemias.We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein cholesterol (after candidate gene sequencing excluded known genetic causes for high low-density lipoprotein cholesterol families) or high-density lipoprotein cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual to account for their burden of common genetic variants known to influence lipid levels. In 9 families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families, despite follow-up analyses. We identified 3 factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease.We identified the genetic basis of disease in 9 of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies.
Project description:We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.
Project description:Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
Project description:Objective- Apo (apolipoprotein) CIII inhibits lipoprotein lipase (LpL)-mediated lipolysis of VLDL (very-low-density lipoprotein) triglyceride (TG) and decreases hepatic uptake of VLDL remnants. The discovery that 5% of Lancaster Old Order Amish are heterozygous for the APOC3 R19X null mutation provided the opportunity to determine the effects of a naturally occurring reduction in apo CIII levels on the metabolism of atherogenic containing lipoproteins. Approach and Results- We conducted stable isotope studies of VLDL-TG and apoB100 in 5 individuals heterozygous for the null mutation APOC3 R19X (CT) and their unaffected (CC) siblings. Fractional clearance rates and production rates of VLDL-TG and apoB100 in VLDL, IDL (intermediate-density lipoprotein), LDL, apo CIII, and apo CII were determined. Affected (CT) individuals had 49% reduction in plasma apo CIII levels compared with CCs ( P<0.01) and reduced plasma levels of TG (35%, P<0.02), VLDL-TG (45%, P<0.02), and VLDL-apoB100 (36%, P<0.05). These changes were because of higher fractional clearance rates of VLDL-TG and VLDL-apoB100 with no differences in production rates. CTs had higher rates of the conversion of VLDL remnants to LDL compared with CCs. In contrast, rates of direct removal of VLDL remnants did not differ between the groups. As a result, the flux of apoB100 from VLDL to LDL was not reduced, and the plasma levels of LDL-cholesterol and LDL-apoB100 were not lower in the CT group. Apo CIII production rate was lower in CTs compared with CCs, whereas apo CII production rate was not different between the 2 groups. The fractional clearance rates of both apo CIII and apo CII were higher in CTs than CCs. Conclusions- These studies demonstrate that 50% reductions in plasma apo CIII, in otherwise healthy subjects, results in a significantly higher rate of conversion of VLDL to LDL, with little effect on direct hepatic uptake of VLDL. When put in the context of studies demonstrating significant protection from cardiovascular events in individuals with loss of function variants in the APOC3 gene, our results provide strong evidence that therapies which increase the efficiency of conversion of VLDL to LDL, thereby reducing remnant concentrations, should reduce the risk of cardiovascular disease.
Project description:The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Project description:ObjectivesLipoprotein(a) [Lp(a)] is mainly similar in composition to LDL, but differs in having apolipoprotein (apo) (a) covalently linked to apoB-100. Our purpose was to examine the individual metabolism of apo(a) and apoB-100 within plasma Lp(a).Materials and methodsThe kinetics of apo(a) and apoB-100 in plasma Lp(a) were assessed in four men with dyslipidemia [Lp(a) concentration: 8.9-124.7nmol/L]. All subjects received a primed constant infusion of [5,5,5-(2)H3] L-leucine while in the constantly fed state. Lp(a) was immunoprecipitated directly from whole plasma; apo(a) and apoB-100 were separated by gel electrophoresis; and isotopic enrichment was determined by gas chromatography/mass spectrometry.ResultsMulticompartmental modeling analysis indicated that the median fractional catabolic rates of apo(a) and apoB-100 within Lp(a) were significantly different at 0.104 and 0.263 pools/day, respectively (P=0.04). The median Lp(a) apo(a) production rate at 0.248nmol/kg·day(-1) was significantly lower than that of Lp(a) apoB-100 at 0.514nmol/kg·day(-1) (P=0.03).ConclusionOur data indicate that apo(a) has a plasma residence time (11days) that is more than twice as long as that of apoB-100 (4days) within Lp(a), supporting the concept that apo(a) and apoB-100 within plasma Lp(a) are not catabolized from the bloodstream as a unit in humans in the fed state.
Project description:New drugs targeting bile acid metabolism are currently being evaluated in clinical studies for their potential to treat cholestatic liver diseases, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Changes in bile acid metabolism, however, translate into an alteration of plasma cholesterol and triglyceride concentrations, which may also affect cardiovascular outcomes in such patients. This review attempts to gain insight into this matter and improve our understanding of the interactions between bile acid and lipid metabolism. Bile acid sequestrants (BAS), which bind bile acids in the intestine and promote their faecal excretion, have long been used in the clinic to reduce LDL cholesterol and, thereby, atherosclerotic cardiovascular disease (ASCVD) risk. However, BAS modestly but consistently increase plasma triglycerides, which is considered a causal risk factor for ASCVD. Like BAS, inhibitors of the apical sodium-dependent bile acid transporter (ASBTi's) reduce intestinal bile acid absorption. ASBTi's show effects that are quite similar to those obtained with BAS, which is anticipated when considering that accelerated faecal loss of bile acids is compensated by an increased hepatic synthesis of bile acids from cholesterol. Oppositely, treatment with farnesoid X receptor agonists, resulting in inhibition of bile acid synthesis, appears to be associated with increased LDL cholesterol. In conclusion, the increasing efforts to employ drugs that intervene in bile acid metabolism and signalling pathways for the treatment of metabolic diseases such as NAFLD warrants reinforcing interactions between the bile acid and lipid and lipoprotein research fields. This review may be considered as the first step in this process.
Project description:Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Project description:RationaleFoam cell formation because of excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis, the major cause of morbidity and mortality in Western societies. Liver X nuclear receptors (LXRs) regulate the expression of the adenosine triphosphate-binding cassette (ABC) transporters, including adenosine triphosphate-binding cassette transporter A1 (ABCA1) and adenosine triphosphate-binding cassette transporter G1 (ABCG1). ABCA1 and ABCG1 facilitate the efflux of cholesterol from macrophages and regulate high-density lipoprotein (HDL) biogenesis. Increasing evidence supports the role of microRNA (miRNAs) in regulating cholesterol metabolism through ABC transporters.ObjectiveWe aimed to identify novel miRNAs that regulate cholesterol metabolism in macrophages stimulated with LXR agonists.Methods and resultsTo map the miRNA expression signature of macrophages stimulated with LXR agonists, we performed an miRNA profiling microarray analysis in primary mouse peritoneal macrophages stimulated with LXR ligands. We report that LXR ligands increase miR-144 expression in macrophages and mouse livers. Overexpression of miR-144 reduces ABCA1 expression and attenuates cholesterol efflux to apolipoproteinA1 in macrophages. Delivery of miR-144 oligonucleotides to mice attenuates ABCA1 expression in the liver, reducing HDL levels. Conversely, silencing of miR-144 in mice increases the expression of ABCA1 and plasma HDL levels. Thus, miR-144 seems to regulate both macrophage cholesterol efflux and HDL biogenesis in the liver.ConclusionsmiR-144 regulates cholesterol metabolism via suppressing ABCA1 expression and modulation of miRNAs may represent a potential therapeutical intervention for treating dyslipidemia and atherosclerotic vascular disease.
Project description:RationaleSingle-nucleotide polymorphisms near the ILRUN (inflammation and lipid regulator with ubiquitin-associated-like and NBR1 [next to BRCA1 gene 1 protein]-like domains) gene are genome-wide significantly associated with plasma lipid traits and coronary artery disease (CAD), but the biological basis of this association is unknown.ObjectiveTo investigate the role of ILRUN in plasma lipid and lipoprotein metabolism.Methods and resultsILRUN encodes a protein that contains a ubiquitin-associated-like domain, suggesting that it may interact with ubiquitinylated proteins. We generated mice globally deficient for Ilrun and found they had significantly lower plasma cholesterol levels resulting from reduced liver lipoprotein production. Liver transcriptome analysis uncovered altered transcription of genes downstream of lipid-related transcription factors, particularly PPARα (peroxisome proliferator-activated receptor alpha), and livers from Ilrun-deficient mice had increased PPARα protein. Human ILRUN was shown to bind to ubiquitinylated proteins including PPARα, and the ubiquitin-associated-like domain of ILRUN was found to be required for its interaction with PPARα.ConclusionsThese findings establish ILRUN as a novel regulator of lipid metabolism that promotes hepatic lipoprotein production. Our results also provide functional evidence that ILRUN may be the casual gene underlying the observed genetic associations with plasma lipids at 6p21 in human.