Project description:BackgroundThis study assessed whether the COVID-19 pandemic has altered parents' attitudes toward vaccinating their children against the flu and barriers to school-based vaccination programs.MethodsA cross-sectional online survey was conducted with 975 parents of children aged 6 months to 11 years between 21-31 December 2022. A multivariate regression was performed to determine predictors of parents' willingness to vaccinate their children against the flu in the winter of 2023.Results45% of parents did not plan to vaccinate their children against the flu, citing concerns about side effects and vaccine effectiveness; 39% already vaccinated their children, and 41% of them reported an increased intention to vaccinate following the pandemic. Only 37% of parents chose school-based vaccination programs, mainly due to a preference for HMO clinics and a lack of available nurses at school. The Health Belief Model variables, namely, perceived susceptibility, severity, and benefits, displayed the largest effect sizes.ConclusionsHealthcare providers and public health officials should address parents' concerns about flu vaccine safety and efficacy to improve vaccination rates among children. Notably, the pandemic has increased vaccine receptivity among some parents. Enhancing accessibility to nursing staff in student health facilities could help boost vaccine uptake.
Project description:Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms.
Project description:BackgroundAlthough vaccination can be a useful tool for control of avian influenza epidemics, it might engender emergence of a vaccine-resistant strain. Field and experimental studies show that some avian influenza strains acquire resistance ability against vaccination. We investigated, in the context of the emergence of a vaccine-resistant strain, whether a vaccination program can prevent the spread of infectious disease. We also investigated how losses from immunization by vaccination imposed by the resistant strain affect the spread of the disease.Methods and findingsWe designed and analyzed a deterministic compartment model illustrating transmission of vaccine-sensitive and vaccine-resistant strains during a vaccination program. We investigated how the loss of protection effectiveness impacts the program. Results show that a vaccination to prevent the spread of disease can instead spread the disease when the resistant strain is less virulent than the sensitive strain. If the loss is high, the program does not prevent the spread of the resistant strain despite a large prevalence rate of the program. The epidemic's final size can be larger than that before the vaccination program. We propose how to use poor vaccines, which have a large loss, to maximize program effects and describe various program risks, which can be estimated using available epidemiological data.ConclusionsWe presented clear and simple concepts to elucidate vaccination program guidelines to avoid negative program effects. Using our theory, monitoring the virulence of the resistant strain and investigating the loss caused by the resistant strain better development of vaccination strategies is possible.
Project description:Currently numerous countries in Asia, Africa and Europe are encountering highly pathogenic avian influenza (AI) infections in poultry and humans. In the Americas, home of the world's largest poultry exporters, contingency plans are being developed and evaluated in preparation for the arrival of these viral strains.With this cross-sectional study, to our knowledge the first in its kind in Central or South America, we sought to learn if Peruvian poultry workers had evidence of previous AI infection and if so, to determine risk factors for infection.We performed a cross-sectional seroprevalence study among 149 workers on a Peruvian poultry farm (133 exposed to poultry and 17 non-exposed controls), serum samples were tested for human influenza virus exposure using a hemagglutination inhibition (HI) assay. Microneutralization assays were performed on all serum samples to detect antibodies against prototypic avian influenza (AI) strains H4 through H12.Using multivariate proportional odds modeling we found that the prevalence of elevated titers against AI viruses was low in both groups, exposed and non-exposed controls.No evidence of previous avian influenza infection among Peruvian poultry workers was found in this first cross-sectional study performed in South America. This first occupational study of AI in Latin America was encouraging, but it likely reflects the sector of poultry production with higher biosecurity.
Project description:Infectious bronchitis virus (IBV) is a coronavirus of the chicken. It is a highly contagious pathogen and in addition to causing respiratory and kidney diseases can affect the reproductive organs, resulting in loss of production and poor egg quality. Despite the global distribution of IBV, Finland has been free of clinical cases for almost three decades. Since April 2011, outbreaks involving genotypes QX, D274-like and 4/91-like have occurred in southern Finland. The clinical samples studied were submitted to the Finnish Food Safety Authority Evira from different regions of Finland during 2011 to 2013 and originated from a voluntary health monitoring programme, a national survey for avian influenza and diagnostic specimens from both commercial poultry production and hobby flocks. The sources of the infections are not known, but strains D274 and 4/91 are widely used in vaccines elsewhere.
Project description:BackgroundHighly pathogenic avian influenza (HPAI) viruses have had devastating effects on poultry industries worldwide, and there is concern about the potential for HPAI outbreaks in the poultry industry in Great Britain (GB). Critical to the potential for HPAI to spread between poultry premises are the connections made between farms by movements related to human activity. Movement records of catching teams and slaughterhouse vehicles were obtained from a large catching company, and these data were used in a simulation model of HPAI spread between farms serviced by the catching company, and surrounding (geographic) areas. The spread of HPAI through real-time movements was modelled, with the addition of spread via company personnel and local transmission.ResultsThe model predicted that although large outbreaks are rare, they may occur, with long distances between infected premises. Final outbreak size was most sensitive to the probability of spread via slaughterhouse-linked movements whereas the probability of onward spread beyond an index premises was most sensitive to the frequency of company personnel movements.ConclusionsResults obtained from this study show that, whilst there is the possibility that HPAI virus will jump from one cluster of farms to another, movements made by catching teams connected fewer poultry premises in an outbreak situation than slaughterhouses and company personnel. The potential connection of a large number of infected farms, however, highlights the importance of retaining up-to-date data on poultry premises so that control measures can be effectively prioritised in an outbreak situation.
Project description:Immunotherapies, such as immune checkpoint inhibitors, cellular therapies, and T-cell engagers, have fundamentally changed our approach to treating cancer. However, successes with cancer vaccines have been more difficult to realize. While vaccines against specific viruses have been widely adopted to prevent the development of cancer, only two vaccines can improve survival in advanced disease: sipuleucel-T and talimogene laherparepvec. These represent the two approaches that have the most traction: vaccinating against cognate antigen and priming responses using tumors in situ. Here, we review the challenges and opportunities researchers face in developing therapeutic vaccines for cancer.