Unknown

Dataset Information

0

Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans.


ABSTRACT: The burden of protein misfolding is believed to contribute to aging. However, the links between adaptations to conditions associated with protein misfolding and resistance to the time-dependent attrition of cellular function remain poorly understood. We report that worms lacking aip-1, a homologue of mammalian AIRAP (arsenic-inducible proteasomal 19S regulatory particle-associated protein), are not only impaired in their ability to resist exposure to arsenite but also exhibit shortened lifespan and hypersensitivity to misfolding-prone proteins under normal laboratory conditions. Mammals have a second, constitutively expressed AIRAP-like gene (AIRAPL) that also encodes a proteasome-interacting protein, which shares with AIRAP the property of enhancing peptide accessibility to the proteasome's active site. Genetic rescue experiments suggest that features common to the constitutively expressed worm AIP-1 and mammalian AIRAPL (but missing in the smaller, arsenite-inducible AIRAP) are important to lifespan extension. In worms, a single AIRAP-related protein links proteasomal adaptation to environmental stress with resistance to both proteotoxic insults and maintenance of animal life span under normal conditions.

SUBMITTER: Yun C 

PROVIDER: S-EPMC2383958 | biostudies-literature | 2008 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans.

Yun Chi C   Stanhill Ariel A   Yang Yun Y   Zhang Yuhong Y   Haynes Cole M CM   Xu Chong-Feng CF   Neubert Thomas A TA   Mor Adam A   Philips Mark R MR   Ron David D  

Proceedings of the National Academy of Sciences of the United States of America 20080508 19


The burden of protein misfolding is believed to contribute to aging. However, the links between adaptations to conditions associated with protein misfolding and resistance to the time-dependent attrition of cellular function remain poorly understood. We report that worms lacking aip-1, a homologue of mammalian AIRAP (arsenic-inducible proteasomal 19S regulatory particle-associated protein), are not only impaired in their ability to resist exposure to arsenite but also exhibit shortened lifespan  ...[more]

Similar Datasets

| S-EPMC5741975 | biostudies-literature
| S-EPMC7024185 | biostudies-literature
| S-EPMC2275101 | biostudies-literature
| S-EPMC2709959 | biostudies-other
| S-EPMC6280797 | biostudies-literature
| S-EPMC4314225 | biostudies-literature
| S-EPMC3390363 | biostudies-literature
| S-EPMC3334618 | biostudies-literature
| S-EPMC3334618 | biostudies-literature
| S-EPMC4331783 | biostudies-literature