Project description:TiO2-supported PdAu bimetallic nanoparticles (NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in PdAu-NPs-TiO2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O2 as the oxidant at the low temperature of 50 °C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35 % and turnover frequency of about 421 h-1 were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in PdAu NPs was also discussed based on the comprehensive characterization results. The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts.
Project description:[reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).
Project description:By varying the steric and electronic surroundings of the hydrogen-bonding motif, the novel chiral Cinchona-alkaloid based selenoureas were developed. Acting as bifunctional catalysts, they were applied in the Michael reactions of dithiomalonate and nitrostyrene providing chiral adducts with up to 96% ee. The asymmetric Michael--hemiacetalization reaction of benzylidene pyruvate and dimedone, performed with the assistance of 5 mol% of selenoureas, furnished the product with up to 93% ee and excellent yields. The effectiveness of the new hydrogen-bond donors was also proved in solvent-free reactions under ball mill conditions, supporting the sustainability of the devised catalytic protocol.
Project description:We have successfully developed a flexible green aqueous approach for the formation of a carbon-carbon bond by the reaction of highly-enolizable carbanions (mostly derived from 1,3-dicarbonyl compounds) with an aromatic carbon bearing a nitro group. The key step involves a nucleophilic displacement reaction. All newly synthesized compounds were unambiguously characterized via various spectroscopic techniques including NMR, mass spectrometry and single-crystal X-ray diffraction as applicable. We believe that our study will be useful in providing new insights into catalyst-free water-mediated nucleophilic substitution reactions.
Project description:Despite the proven value in utilizing pyrone dienes to create molecular complexity via Diels-Alder reactions with varied dienophiles, few examples of effective catalytic, asymmetric variants of this process have been developed. Herein, we show that the use of Jørgensen-Hayashi-type catalysts can convert an array of α,β-unsaturated aldehydes into chiral dienamines that can formally add in a Diels-Alder fashion to a number of electron-deficient pyrones of the coumalate-type to generate optically active [2.2.2]-bicyclic lactones. In most cases, the reactions proceed with good to excellent diastereo- and enantiocontrol (up to 99% ee). Models to explain that stereoselectivity, as well as several additional transformations of the resultant products, are also presented.
Project description:Tandem conjugate addition, decarboxylation and esterification/amidation of coumarin 3-carboxylic acid derivatives with pyrazolones have been developed. The reactions were performed with coumarin 3-carboxylic acid/esters and pyrazolone in alcohol as a solvent to afford the corresponding pyrazolyl 2-hydroxy phenylpropionate derivatives. Amines and green solvents were employed for amidation in the addition reaction. The methodology has advantages such as excellent yields, a broad substrate scope, catalyst-free, easy purification by simple filtration without any workup, mild conditions and does not require any organic solvents, ligands, base or any additives. This is a green and general synthetic protocol, which could be applicable for the synthesis of substituted pyrazolyl phenyl propionate/amide derivatives. This approach demonstrates the importance of the coumarin 3-carboxylic acid/ester core structure for Michael addition.
Project description:In this study, we have delved into various reactions conducted using green solvents or under solvent-free conditions, employing hydrogen bonding organocatalysis to advance more sustainable practices in chemical synthesis. The outcomes suggest that cyclopentyl methyl ether could potentially replace non-polar organic solvents such as hexane and toluene with comparable enantioselectivity and yields. The non-polar nature of liquefied or supercritical CO2 restricts its application to reactions that require non-polar solvents. Furthermore, pursuing solvent-free conditions, even without liquid substrates, might result in similar conversion rates with reduced catalyst loading. These findings highlight the potential of exploring solvent-free conditions when enantioselectivity is not of concern. Based on the results, solvent-free conditions and bio-based solvents can serve as viable alternatives to conventional organic solvents without compromising performance. This is expected to influence the way chemists approach reaction optimisation within method development in the field, fostering a broader adoption of environmentally friendly approaches.
Project description:Considering the remarkable relevance of acetylated derivatives of phenols, alcohols, and aryl and alkyl thiols in different areas of biology, as well as in synthetic organic chemistry, a sustainable solvent-free approach to perform acetylation reactions is proposed here. Acetylation reactions are classically performed using excess of acetic anhydride (Ac2O) in solvent-free conditions or by eventually working with stoichiometric amounts of Ac2O in organic solvents; both methods require the addition of basic or acid catalysts to promote the esterification. Therefore, they usually lead to the generation of high amounts of wastes, which sensibly raise the E-factor of the process. With the aim to develop a more sustainable system, a solvent-free, stoichiometric acetylation protocol is, thus, proposed. The naturally occurring phenol, thymol, can be converted to the corresponding-biologically active-ester with good yields, in the presence of 1% of VOSO4. Interestingly, the process can be efficiently adopted to synthesize other thymyl esters, as well as to perform acetylation of alcohols and aryl and alkyl thiols. Remarkably, a further improvement has been achieved replacing Ac2O with its greener alternative, isopropenyl acetate (IPA).
Project description:High ionic carrier mobilities are important for the electrolyte solutions used in high-performance batteries. Based on the functional sharing concept, we fabricated mixed electrolytes consisting of solvate ionic liquids (SIL), which are highly concentrated solution electrolyte, and the non-coordinating low-viscosity dilution solvent 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (HFE). We investigated the thermal, transport, and static properties of electrolytes with different ratios of SIL to HFE. In particular, the interactions between the SILs and HFE and static correlations of the coordinating (ether-based molecules), non-coordinating (HFE), and carrier ionic species (lithium salt) were clarified by applying the excess density concept. Ether molecules always formed strong complexes with lithium cations regardless of the absence or presence of HFE. The repulsion force between the SILs and HFE was strongly affected by lithium salt concentration. From our results, we proposed dissociation/association models for these electrolyte systems.
Project description:The development of new and greener approaches to organic synthesis has been a trend in recent years. Continuing the latest publications of our team, in this work, we demonstrate the efficiency of three solvents: eucalyptol (1,8-cineole), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) for the synthesis of O,S,N-heterocyclic compounds.