Project description:Helicobacter pylori is one of the world's most successful human pathogens causing gastric ulcers and cancers. A key virulence factor of H. pylori is the Cag pathogenicity island, which encodes a type IV secretion system. HP0525 is an essential component of the Cag system and acts as an inner membrane associated ATPase. HP0525 forms double hexameric ring structures, with the C-terminal domains (CTDs) forming a closed ring and the N-terminal domains (NTDs) forming a dynamic, open ring. Here, the crystal structure of HP0525 in complex with a fragment of HP1451, a protein of previously unknown function, is reported. The HP1451 construct consists of two domains similar to nucleic acid-binding domains. Two HP1451 molecules bind to the HP0525 NTDs on opposite sides of the hexamer, locking it in the closed form and forming a partial lid over the HP0525 chamber. From the structure, it is suggested that HP1451 acts as an inhibitory factor of HP0525 to regulate Cag-mediated secretion, a suggestion confirmed by results of in vitro ATPase assay and in vivo pull-down experiments.
Project description:The VacA toxin produced by Helicobacter pylori acts inside cells and induces the formation of vacuoles arising from late endosomal/lysosomal compartments. Using VacA as bait in a yeast two-hybrid screening of a HeLa cell library, we have identified a novel protein of 54 kDa (VIP54), which interacts specifically with VacA, as indicated by co-immunoprecipitation and binding experiments. VIP54 is expressed in cultured cells and many tissues, with higher expression in the brain, muscle, kidney and liver. Confocal immunofluorescence microscopy with anti-VIP54 affinity- purified antibodies shows a fibrous pattern typical of intermediate filaments. Double label immunofluorescence performed on various cell lines with antibodies specific to different intermediate filament proteins revealed that VIP54 largely co-distributes with vimentin. In contrast to known intermediate filament proteins, VIP54 is predicted to contain approximately 50% of helical segments, but no extended coiled-coil regions. The possible involvement of this novel protein in interactions between intermediate filaments and late endosomal compartments is discussed.
Project description:Helicobacter pylori is a Gram-negative bacterium that colonizes the gut of over 50% of the world's population. It is responsible for most peptic ulcers and is an important risk factor for gastric cancer. Antibiotic treatment for H. pylori infections is challenging as drug resistance has developed to antibiotics with traditional mechanisms of action. H. pylori uses an unusual pathway for menaquinone biosynthesis with 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzing an essential step. We validated MTAN as a target with a transition-state analogue of the enzyme [Wang, S.; Haapalainen, A. M.; Yan, F.; et al. Biochemistry 2012, 51, 6892-6894]. MTAN inhibitors will only be useful drug candidates if they can both include tight binding to the MTAN target and have the ability to penetrate the complex cell membrane found in Gram-negative H. pylori. Here we explore structural scaffolds for MTAN inhibition and for growth inhibition of cultured H. pylori. Sixteen analogues reported here are transition-state analogues of H. pylori MTAN with dissociation constants of 50 pM or below. Ten of these prevent growth of the H. pylori with IC90 values below 0.01 μg/mL. These remarkable compounds meet the criteria for potent inhibition and cell penetration. As a consequence, 10 new H. pylori antibiotic candidates are identified, all of which prevent H. pylori growth at concentrations 16-2000-fold lower than the five antibiotics, amoxicillin, metronidazole, levofloxacin, tetracyclin, and clarithromycin, commonly used to treat H. pylori infections. X-ray crystal structures of MTAN cocrystallized with several inhibitors show them to bind in the active site making interactions consistent with transition-state analogues.
Project description:A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP) has been determined in two forms: the native state (Apo) at 2.20 Å resolution and an iron-loaded form (Fe-load) at 2.50 Å resolution. The highly solvated packing of the dodecameric shell is suitable for crystallographic study of the metal ion-uptake pathway. Like other bacterioferritins, HP-NAP forms a spherical dodecamer with 23 symmetry including two kinds of channels. Iron loading causes a series of conformational changes of amino-acid residues (Trp26, Asp52 and Glu56) at the ferroxidase centre.
Project description:Proteins belonging to the histidine triad (HIT) superfamily bind nucleotides and use the histidine triad motif to carry out dinucleotidyl hydrolase, nucleotidyltransferase and phosphoramidite hydrolase activities. Five different branches of this superfamily are known to exist. Defects in these proteins in humans are linked to many diseases such as ataxia, diseases of RNA metabolism and cell-cycle regulation, and various types of cancer. The histidine triad nucleotide protein (HINT) is nearly identical to proteins that have been classified as protein kinase C-interacting proteins (PKCIs), which also have the ability to bind and inhibit protein kinase C. The structure of HINT, which exists as a homodimer, is highly conserved from humans to bacteria and shares homology with the product of fragile histidine triad protein (FHit), a tumour suppressor gene of this superfamily. Here, the structure of HINT from Helicobacter pylori (HpHINT) in complex with AMP is reported at a resolution of 3 Å. The final model has R and Rfree values of 26 and 28%, respectively, with good electron density. Structural comparison with previously reported homologues and phylogenetic analysis shows H. pylori HINT to be the smallest among them, and suggests that it branched out separately during the course of evolution. Overall, this structure has contributed to a better understanding of this protein across the animal kingdom.
Project description:Chemotaxis is an important virulence factor for Helicobacter pylori colonization and infection. The chemotactic system of H. pylori is marked by the presence of multiple response regulators: CheY1, one CheY-like-containing CheA protein (CheAY2), and three CheV proteins. Recent studies have demonstrated that these molecules play unique roles in the chemotactic signal transduction mechanisms of H. pylori. Here we report the crystal structures of BeF(3(-)-activated CheY1 from H. pylori resolved to 2.4 A. Structural comparison of CheY1 with active-site residues of BeF3(-)-bound CheY from Escherichia coli and fluorescence quenching experiments revealed the importance of Thr84 in the phosphotransfer reaction. Complementation assays using various nonchemotactic E. coli mutants and pull-down experiments demonstrated that CheY1 displays differential association with the flagellar motor in E. coli. The structural rearrangement of helix 5 and the C-terminal loop in CheY1 provide a different interaction surface for FliM. On the other hand, interaction of the CheA-P2 domain with CheY1, but not with CheY2/CheV proteins, underlines the preferential recognition of CheY1 by CheA in the phosphotransfer reaction. Our results provide the first structural insight into the features of the H. pylori chemotactic system as a model for Epsilonproteobacteria.
Project description:The ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for colonization and survival within the gastric mucosa. H. pylori Fur is unique in its ability to activate and repress gene expression in both the iron-bound (Fe-Fur) and apo forms (apo-Fur). In the current study we combined random and site-specific mutagenesis to identify amino acid residues important for both Fe-Fur and apo-Fur function. We identified 25 mutations that affected Fe-Fur repression and 23 mutations that affected apo-Fur repression, as determined by transcriptional analyses of the Fe-Fur target gene amiE, and the apo-Fur target gene, pfr. In addition, eight of these mutations also significantly affected levels of Fur in the cell. Based on regulatory phenotypes, we selected several representative mutations to characterize further. Of those selected, we purified the wild-type (HpFurWT) and three mutant Fur proteins (HpFurE5A, HpFurA92T and HpFurH134Y), which represent mutations in the N-terminal extension, the regulatory metal binding site (S2) and the structural metal binding site (S3) respectively. Purified proteins were evaluated for secondary structure by circular dichroism spectroscopy, iron-binding by atomic absorption spectrophotometry, oligomerization in manganese-substituted and apo conditions by in vitro cross-linking assays, and DNA binding to Fe-Fur and apo-Fur target sequences by fluorescence anisotropy. The results showed that the N-terminal, S2 and S3 regions play distinct roles in terms of Fur structure-function relationships. Overall, these studies provide novel information regarding the role of these residues in Fur function, and provide mechanistic insight into how H. pylori Fur regulates gene expression in both the iron-bound and apo forms of the protein.
Project description:The development of gastrointestinal diseases has been found to be associated with Helicobacter pylori (H. pylori) infection and various biochemical stresses in stomach and intestine. These stresses, such as oxidative, osmotic and acid stresses, may bring about bi-directional effects on both hosts and H. pylori, leading to changes of protein expression in their proteomes. Therefore, proteins differentially expressed in H. pylori under various stresses not only reflect gastrointestinal environment but also provide useful biomarkers for disease diagnosis and prognosis. In this regard, proteomic technology is an ideal tool to identify potential biomarkers as it can systematically monitor proteins and protein variation on a large scale of cell's translational landscape, permitting in-depth analyses of host and pathogen interactions. By performing two-dimensional polyacrylamide gel electrophoresis (2-DE) followed by liquid chromatography-nanoESI-mass spectrometry (nanoLC-MS/MS), we have successfully pinpointed alkylhydroperoxide reductase (AhpC), neutrophil-activating protein and non-heme iron-binding ferritin as three prospective biomarkers showing up-regulation in H. pylori under oxidative, osmotic and acid stresses, respectively. Further biochemical characterization reveals that various environmental stresses can induce protein structure change and functional conversion in the identified biomarkers. Especially salient is the antioxidant enzyme AhpC, an abundant antioxidant protein present in H. pylori. It switches from a peroxide reductase of low-molecular-weight (LMW) oligomers to a molecular chaperone of high-molecular-weight (HMW) complexes under oxidative stress. Different seropositivy responses against LMW or HMW AhpC in H. pylori-infected patients faithfully match the disease progression from disease-free healthy persons to patients with gastric ulcer and cancer. These results has established AhpC of H. pylori as a promising diagnostic marker for gastrointestinal maladies, and highlight the utility of clinical proteomics for identifying disease biomarkers that can be uniquely applied to disease-oriented translational medicine.
Project description:Helicobacter pylori is one of the most common bacterial infections; over two-thirds of the world's population is infected by early childhood. Persistent H. pylori infection results in gastric ulcers and cancers. Due to drug resistance, there is a need to develop alternative treatments to clear H. pylori. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) conducts structure-function analysis of potential therapeutic targets from H. pylori. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined the apo structure of H. pylori GluRS (HpGluRS). HpGluRS has the prototypical bacterial GluRS topology and has similar binding sites and tertiary structures to other bacterial GluRS that are promising drug targets. Residues involved in glutamate binding are well conserved in comparison with Pseudomonas aeruginosa GluRS (PaGluRS), which has been studied to develop promising new inhibitors for P. aeruginosa. These structural similarities can be exploited for drug discovery and repurposing to generate new antibacterials to clear persistent H. pylori infection and reduce gastric ulcers and cancer.
Project description:The availability of complete genome sequences of H. pylori 26695 has provided a wealth of information enabling us to carry out in silico studies to identify new molecular targets for pharmaceutical treatment. In order to construe the structural and functional information of complete proteome, use of computational methods are more relevant since these methods are reliable and provide a solution to the time consuming and expensive experimental methods. Out of 1590 predicted protein coding genes in H. pylori, experimentally determined structures are available for only 145 proteins in the PDB. In the absence of experimental structures, computational studies on the three dimensional (3D) structural organization would help in deciphering the protein fold, structure and active site. Functional annotation of each protein was carried out based on structural fold and binding site based ligand association. Most of these proteins are uncharacterized in this proteome and through our annotation pipeline we were able to annotate most of them. We could assign structural folds to 464 uncharacterized proteins from an initial list of 557 sequences. Of the 1195 known structural folds present in the SCOP database, 411 (34% of all known folds) are observed in the whole H. pylori 26695 proteome, with greater inclination for domains belonging to α/β class (36.63%). Top folds include P-loop containing nucleoside triphosphate hydrolases (22.6%), TIM barrel (16.7%), transmembrane helix hairpin (16.05%), alpha-alpha superhelix (11.1%) and S-adenosyl-L-methionine-dependent methyltransferases (10.7%).