Project description:This study describes the influence of selected synthetic macrocycle on the gene expression in Pseudomonas aeruginosa PAO1. In this work, we propose two distinct functionalities responsible for a dual mechanism of action. We identified a water-soluble pillararene whose inner cavity tightly binds to specific homoserine lactones (HSLs) thereby interfering with interbacterial signalling, leading to effective synchronized suppression of exotoxins and biofilms in P. aeruginosa. An additional concerted mechanism of action is suggested that involves the cationic functional side groups on the pillararene that disrupt both the bacterial outer membrane and biofilms, to increase the penetration and efficacy of intracellular antibiotics.
Project description:Our study showed that selected pillararene was able to decrease the level of cell death and demage caused to human A549 epithelial cells by Pseudomonas aeruginosa PAO1 infection. To further understand the protective effects of pillararene during bacterial infections, we analyzed total mRNA isolated from the A549 epithelial cells. Our study showed that pillararene alone had minimal effect on A549 epithelial cells. The addition of PAO1 to A549 cells greatly altered expression levels. The addition of pillararene to infected A549 epithelial cells displayed a concentration-dependent reduction in the inflammatory response.
Project description:CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) technology is a powerful tool in biology and medicine. However, the safety and application of this technology is hampered by excessive activity of CRISPR machinery. It is particularly important to develop methods for switching off CRISPR activity in human cells. The current study demonstrates the concept of supramolecular CRISPR-OFF switches by employing host-guest chemistry. We demonstrate that the CRISPR systems show considerable tolerance to adamantoylation on guide RNAs (gRNAs), whereas supramolecular complexation tremendously affects the function of adamantoyl gRNAs. Host-guest chemistry is demonstrated to be novel and effective tools to reduce unwanted excessive activities of CRISPR complexes in human cells. This work indicates considerable potential of supramolecular strategy for controlling and enhancing CRISPR systems.
Project description:The widespread adoption of the bioorthogonal chemical reporter strategy revolutionized chemical biology. However, its translation to living mammals has been challenging, due to the size/stability properties of the chemical reporter group and/or the reaction kinetics of the labeling step. While developing new bioorthogonal reactions has been the traditional approach to optimizing the bioorthogonal chemical reporter strategy, here we present a different avenue, leveraging intermolecular interactions, to create bioorthogonal host-guest pairs. This approach, deemed "bioorthogonal complexation, does not rely on activated functional groups or second-order rate constants. We utilize the cucurbit[7]uril (CB[7]) scaffold to showcase bioorthogonal complexation and determine that medium-affinity (Ka ≈ 108-109 M-1) guests efficiently label cell surfaces and outperform the strain-promoted azide-alkyne cycloaddition. Finally, we implement bioorthogonal complexation in the chemical reporter strategy through the metabolic incorporation of ortho-carborane into cell-surface glycans and detection with a CB[7]-fluorescein conjugate.
Project description:Prolonged retention of internalized nanoparticulate systems inside cells improves their efficacy in imaging, drug delivery, and theranostic applications. Especially, regulating exocytosis of the nanoparticles is a key factor in the fabrication of effective nanocarriers for chemotherapeutic treatments but orthogonal control of exocytosis in the cellular environment is a major challenge. Herein, we present the first example of regulating exocytosis of gold nanoparticles (AuNPs), a model drug carrier, by using a simple host-guest supramolecular system. AuNPs featuring quaternary amine head groups were internalized into the cells through endocytosis. Subsequent in situ treatment of a complementary cucurbit[7]uril (CB[7]) to the amine head groups resulted in the AuNP-CB[7] complexation inside cells, rendering particle assembly. This complexation induced larger particle assemblies that remained sequestered in the endosomes, inhibiting exocytosis of the particles without any observed cytotoxicity.
Project description:We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Project description:Dynamic regulation of chemical reactivity is important in many complex chemical reaction networks, such as cascade reactions and signal transduction processes. Signal responsive catalysts could play a crucial role in regulating these reaction pathways. Recently, supramolecular encapsulation was reported to regulate the activities of artificial catalysts. We present a host-guest chemistry strategy to modulate the activity of commercially available synthetic organocatalysts. The molecular container cucurbit[7]uril was successfully applied to change the activity of four different organocatalysts and one initiator, enabling up- or down-regulation of the reaction rates of four different classes of chemical reactions. In most cases CB[7] encapsulation results in catalyst inhibition, however in one case catalyst activation by binding to CB[7] was observed. The mechanism behind this unexpected behavior was explored by NMR binding studies and pKa measurements. The catalytic activity can be instantaneously switched during operation, by addition of either supramolecular host or competitive binding molecules, and the reaction rate can be predicted with a kinetic model. Overall, this signal responsive system proves a promising tool to control catalytic activity.
Project description:Combining chemical and whole-cell catalysts enables sustainable chemoenzymatic cascade reactions. However, their traditional combination faces challenges in catalyst recycling and maintaining cell viability. Here, we introduce a supramolecular host-guest strategy that efficiently attaches photocatalysts to bacterial cells, facilitating recyclable photobiocatalysis. This method involves attaching a cationic polyethylenimine (PEI) polymer, functionalized with β-cyclodextrin (β-CD), to E. coli cells. The polymer attachment is biocompatible and protective, safeguarding the cells from harsh conditions such as UV radiation and organic solvents, without causing cell death. Additionally, the presence of β-CD imparts a plug-and-play capability to the cells, enabling the straightforward integration of guest photocatalysts - specifically anthraquinone - onto the cell surface through host-guest interactions. This effective combination of cellular and chemical catalysts promotes efficient photobiocatalytic cascades and supports the photocatalyst's recycling and reuse. This supramolecular system thus represents a promising platform for advancing photobiocatalysis in cascade synthesis.