Project description:Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and defined by unexplained isolated progressive myocardial hypertrophy, systolic and diastolic ventricular dysfunction, arrhythmias, sudden cardiac death and histopathologic changes, such as myocyte disarray and myocardial fibrosis. Mutations in genes encoding for proteins of the contractile apparatus of the cardiomyocyte, such as β-myosin heavy chain and myosin binding protein C, have been identified as cause of the disease. Disease is caused by altered biophysical properties of the cardiomyocyte, disturbed calcium handling, and abnormal cellular metabolism. Mutations in sarcomere genes can also activate other signaling pathways via transcriptional activation and can influence non-cardiac cells, such as fibroblasts. Additional environmental, genetic and epigenetic factors result in heterogeneous disease expression. The clinical course of the disease varies greatly with some patients presenting during childhood while others remain asymptomatic until late in life. Patients can present with either heart failure symptoms or the first symptom can be sudden death due to malignant ventricular arrhythmias. The morphological and pathological heterogeneity results in prognosis uncertainty and makes patient management challenging. Current standard therapeutic measures include the prevention of sudden death by prohibition of competitive sport participation and the implantation of cardioverter-defibrillators if indicated, as well as symptomatic heart failure therapies or cardiac transplantation. There exists no causal therapy for this monogenic autosomal-dominant inherited disorder, so that the focus of current management is on early identification of asymptomatic patients at risk through molecular diagnostic and clinical cascade screening of family members, optimal sudden death risk stratification, and timely initiation of preventative therapies to avoid disease progression to the irreversible adverse myocardial remodeling stage. Genetic diagnosis allowing identification of asymptomatic affected patients prior to clinical disease onset, new imaging technologies, and the establishment of international guidelines have optimized treatment and sudden death risk stratification lowering mortality dramatically within the last decade. However, a thorough understanding of underlying disease pathogenesis, regular clinical follow-up, family counseling, and preventative treatment is required to minimize morbidity and mortality of affected patients. This review summarizes current knowledge about molecular genetics and pathogenesis of HCM secondary to mutations in the sarcomere and provides an overview about current evidence and guidelines in clinical patient management. The overview will focus on clinical staging based on disease mechanism allowing timely initiation of preventative measures. An outlook about so far experimental treatments and potential for future therapies will be provided.
Project description:AimsTo describe the phenotype, genetics, and events associated with the development of hypertrophic cardiomyopathy (HCM) with reduced ventricular function (HCMr). Heart failure in HCM is usually associated with preserved ejection fraction, yet some HCM patients develop impaired systolic function that is associated with worse outcomes.Methods and resultsOur registry included 1328 HCM patients from two centres in Spain and Israel. Patients with normal baseline ventricular function were matched, and a competing-risk analysis was performed to find factors associated with HCMr development. Patient records were reviewed to recognize clinically significant events that occurred closely before the development of HCMr. Genetic data were collected in patients with HCMr. A composite of all-cause mortality or ventricular assist device (VAD)/heart transplantation was assessed according to ventricular function. Median age was 56, and 34% were female patients. HCMr at evaluation was seen in 37 (2.8%) patients, and 46 (3.5%) developed HCMr during median follow up of 9 years. HCMr was associated with younger age of diagnosis, poor functional class, and ventricular arrhythmia. Atrial fibrillation, pacemaker implantation, and baseline left ventricular ejection fraction (LVEF) of ≤55% were significant predictors of future HCMr development, while LV obstruction predicted a lower risk. Genetic testing performed in 53 HCMr patients, identifying one or more pathogenic variant in 38 (72%): most commonly in myosin binding protein C (n = 20). Six of these patients had an additional pathogenic variant in one of the sarcomere genes. Patients with baseline HCMr had a higher risk (hazard ratio 6.4, 4.1-10.1) for the composite outcome and for the individual components. Patients who developed HCMr in the course of the study had similar mortality but a higher rate of VAD/heart transplantation compared with HCM with normal LVEF.ConclusionsHypertrophic cardiomyopathy with reduced ejection fraction is associated with heart failure and poor outcome. Arrhythmia, cardiac surgery, and device implantation were commonly documented prior to HCMr development, suggesting they may be either a trigger or the result of adverse remodelling. Future studies should focus on prediction and prevention of HCMr.
Project description:Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by left ventricular hypertrophy unexplained by secondary causes and a nondilated left ventricle with preserved or increased ejection fraction. It is commonly asymmetrical with the most severe hypertrophy involving the basal interventricular septum. Left ventricular outflow tract obstruction is present at rest in about one third of the patients and can be provoked in another third. The histological features of HCM include myocyte hypertrophy and disarray, as well as interstitial fibrosis. The hypertrophy is also frequently associated with left ventricular diastolic dysfunction. In the majority of patients, HCM has a relatively benign course. However, HCM is also an important cause of sudden cardiac death, particularly in adolescents and young adults. Nonsustained ventricular tachycardia, syncope, a family history of sudden cardiac death, and severe cardiac hypertrophy are major risk factors for sudden cardiac death. This complication can usually be averted by implantation of a cardioverter-defibrillator in appropriate high-risk patients. Atrial fibrillation is also a common complication and is not well tolerated. Mutations in over a dozen genes encoding sarcomere-associated proteins cause HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin-binding protein C, respectively, are the 2 most common genes involved, together accounting for ≈50% of the HCM families. In ≈40% of HCM patients, the causal genes remain to be identified. Mutations in genes responsible for storage diseases also cause a phenotype resembling HCM (genocopy or phenocopy). The routine applications of genetic testing and preclinical identification of family members represents an important advance. The genetic discoveries have enhanced understanding of the molecular pathogenesis of HCM and have stimulated efforts designed to identify new therapeutic agents.
Project description:Hypertrophic cardiomyopathy (HCM) is most commonly transmitted as an autosomal dominant trait, caused by mutations in genes encoding cardiac sarcomere proteins1-3. Other inheritable causes of the disease include mutations in genes coding for proteins important in calcium handling or that form part of the cytoskeleton4-6. At present, the primary clinical role of genetic testing in HCM is to facilitate familial screening to allow the identification of individuals at risk of developing the disease7,8. It is also used to diagnose genocopies, such as lysosomal9-11 and glycogen storage disease which have different treatment strategies, rates of disease progression and prognosis12-14. The role of genetic testing in predicting prognosis is limited at present, but emerging data suggest that knowledge of the genetic basis of disease will assume an important role in disease stratification15-17 and offer potential targets for disease-modifying therapy in the near future18.
Project description:Understanding the genetic basis of hypertrophic cardiomyopathy (HCM) provides a remarkable opportunity to predict and prevent disease. HCM is caused by mutations in sarcomere genes and is the most common monogenic cardiovascular disorder. Although unexplained left ventricular hypertrophy (LVH) is considered diagnostic, LVH is not always present. LV wall thickness is often normal until adolescence or later, even in individuals known to carry pathogenic sarcomere mutations. In contrast, genetic testing can identify both individuals who carry pathogenic sarcomere mutations and have a clinical diagnosis of HCM, as well as mutation carriers who have not yet manifest LVH but are at very likely to develop disease. Studying this important new patient subset, designated early or preclinical HCM, allows characterization of the initial consequences of sarcomere mutations, prior to the onset of overt hypertrophic remodeling. Such study has defined novel early phenotypes, including impaired left ventricular relaxation, myocardial energetic deficiencies, and altered collagen metabolism, in mutation carriers with apparently normal cardiac morphology. These results indicate that sarcomere mutations have substantial impact on myocardial function and biochemistry before the onset of frank hypertrophy. Furthermore, animal models of preclinical HCM have identified promising new treatment strategies that may diminish the emergence of overt disease. We can now begin to reshape the paradigm for treating genetic disorders. With improved mechanistic insight and the capability for early diagnosis, genetic advances can lead to new approaches for disease modification and prevention.
Project description:Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most common referrals in the Inherited Cardiovascular Condition (ICC) Genetics Service. Several issues must be discussed with patients and their families during the genetic consultation session, including the options for genetic testing and cardiovascular surveillance in family members. We developed an ICC registry and performed next-generation-based DNA sequencing for all patients affected by non-syndromic HCM and idiopathic DCM in our joint specialist genetics service. The target gene sequencing panel relied on the Human Phenotype Ontology with 237 genes for HCM (HP:0001639) and 142 genes for DCM (HP:0001644). All subjects were asked to contact their asymptomatic first-degree relatives for genetic counseling regarding their risks and to initiate cardiovascular surveillance and cascade genetic testing. The study was performed from January 1, 2014, to December 31, 2020, and a total of 62 subjects (31-HCM and 31-DCM) were enrolled. The molecular detection frequency was 48.39% (32.26% pathogenic/likely pathogenic, 16.13% variant of uncertain significance or VUS for HCM, and 25.81% (16.13% pathogenic/likely pathogenic, 9.68% VUS) for DCM. The most prevalent gene associated with HCM was MYBPC3. The others identified in this study included ACTN2, MYL2, MYH7, TNNI3, TPM1, and VCL. Among the DCM subjects, variants were detected in two cases with the TTN nonsense variants, while the others were missense and identified in MYH7, DRSP3, MYBPC3, and SCN5A. Following the echocardiogram surveillance and cascade genetic testing in the asymptomatic first-degree relatives, the detection rate of new cases was 8.82% and 6.25% in relatives of HCM and DCM subjects, respectively. Additionally, a new pre-symptomatic relative belonging to an HCM family was identified, although the genomic finding in the affected case was absent. Thus, ICC service is promising for the national healthcare system, aiming to prevent morbidity and mortality in asymptomatic family members.
Project description:Genetic testing for hypertrophic cardiomyopathy (HCM) is an established clinical technique, supported by 30 years of research into its genetic etiology. Although pathogenic variants are often detected in patients and used to identify at-risk relatives, the effectiveness of genetic testing has been hampered by ambiguous genetic associations (yielding uncertain and potentially false-positive results), difficulties in classifying variants, and uncertainty about genotype-negative patients. Recent case-control studies on rare variation, improved data sharing, and meta-analysis of case cohorts contributed to new insights into the genetic basis of HCM. In particular, although research into new genes and mechanisms remains essential, reassessment of Mendelian genetic associations in HCM argues that current clinical genetic testing should be limited to a small number of validated disease genes that yield informative and interpretable results. Accurate and consistent variant interpretation has benefited from new standardized variant interpretation guidelines and innovative approaches to improve classification. Most cases lacking a pathogenic variant are now believed to indicate non-Mendelian HCM, with more benign prognosis and minimal risk to relatives. Here, we discuss recent advances in the genetics of HCM and their application to clinical genetic testing together with practical issues regarding implementation. Although this review focuses on HCM, many of the issues discussed are also relevant to other inherited cardiac diseases.
Project description:AimsData on the clinical course of hypertrophic cardiomyopathy (HCM) are mainly derived from tertiary HCM centre studies, and knowledge of clinical outcomes of patients leaving specialty care and returning to local physicians is limited due to gaps between clinical encounters or complete loss of follow-up. This survey aims to describe the clinical course of HCM in patients following their evaluation at a tertiary referral centre.Methods and resultsA comprehensive outcomes survey was developed and sent to 4495 eligible patients with HCM previously evaluated at Mayo Clinic. Questions assessed general well-being, New York Heart Association class, procedures performed, and probable HCM-triggered ventricular arrhythmic events (VAEs) since last visit. In total, 2058 patients (mean age 63 ± 15 years; 42% female) responded to the survey covering a total of 10 510 patient-years with an average of 5.4 ± 6.4 years of follow-up since their last on-campus/virtual visit to Mayo Clinic. During their time away from specialty care, 20% of patients reported having cardiac-related hospitalizations and 25% reported having cardiac-related procedures. Similar to high-risk referral cohorts, 5% of patients reported VAEs with an event rate of 0.98 events/100 patient-years. The prevalence of atrial fibrillation, syncope, pre-syncope, cardiac-related hospitalizations, and VAEs during time away from specialty care increased significantly with increasing New York Heart Association class (P < 0.001).ConclusionsAcknowledging ascertainment bias, the clinical course of patients away from tertiary care may be more severe than previously anticipated. Among those with exertional symptoms, HCM-related morbidity increased substantially. Higher risk HCM patients should remain in contact with HCM specialty care.
Project description:Hypertrophic cardiomyopathy (HCM) is often accompanied by increased trabeculated myocardium (TM)-which clinical relevance is unknown. We aim to measure the left ventricular (LV) mass and proportion of trabeculation in an HCM population and to analyze its clinical implication. We evaluated 211 patients with HCM (mean age 47.8 ± 16.3 years, 73.0% males) with cardiac magnetic resonance (CMR) studies. LV trabecular and compacted mass were measured using dedicated software for automatic delineation of borders. Mean compacted myocardium (CM) was 160.0 ± 62.0 g and trabecular myocardium (TM) 55.5 ± 18.7 g. The percentage of trabeculated myocardium (TM%) was 26.7% ± 6.4%. Females had significantly increased TM% compared to males (29.7 ± 7.2 vs. 25.6 ± 5.8, p < 0.0001). Patients with LVEF < 50% had significantly higher values of TM% (30.2% ± 6.0% vs. 26.6% ± 6.4%, p = 0.02). Multivariable analysis showed that female gender and neutral pattern of hypertrophy were directly associated with TM%, while dynamic obstruction, maximal wall thickness and LVEF% were inversely associated with TM%. There was no association between TM% with arterial hypertension, physical activity, or symptoms. Atrial fibrillation and severity of hypertrophy were the only variables associated with cardiovascular death. Multivariable analysis failed to demonstrate any correlation between TM% and arrhythmias. Approximately 25% of myocardium appears non-compacted and can automatically be measured in HCM series. Proportion of non-compacted myocardium is increased in female, non-obstructives, and in those with lower contractility. The amount of trabeculation might help to identify HCM patients prone to systolic heart failure.