Project description:BackgroundClinical cross-reactivity between bony fish, cartilaginous fish, frog, and chicken muscle has previously been demonstrated in fish-allergic patients. In indicative studies, two reports of anaphylaxis following the consumption of crocodile meat and IgE-cross-binding were linked to the major fish allergen parvalbumin (PV). This study investigates IgE-binding proteins in crocodile meat with a focus on PV and their clinical relevance.MethodsProteins were extracted from muscle tissue of crocodile, three bony fish, and two cartilaginous fish. A cohort of fish-allergic pediatric patients (n = 77) underwent allergen skin prick testing (SPT) to three fish preparations (n = 77) and crocodile (n = 12). IgE-binding proteins were identified and quantified by SDS-PAGE, mass spectrometric analyses, and immunoblotting using commercial and in-house antibodies, as well as individual and pooled patients' serum. PV isoforms were purified or recombinantly expressed before immunological analyses, including human mast cell degranulation assay.ResultsOf the tissues analyzed, PV was most abundant in heated crocodile preparation, triggering an SPT of ≥3 mm in 8 of 12 (67%) fish-allergic patients. Seventy percent (31 of 44) of fish PV-sensitized patients demonstrated IgE-binding to crocodile PV. Crocodile β-PV was the major IgE-binding protein but 20-fold less abundant than α-PV. Cellular reactivity was demonstrated for β-PV and epitopes predicted, explaining frequent IgE-cross-binding of β-PVs. Both PV isoforms are now registered as the first reptile allergens with the WHO/IUIS (β-PV as Cro p 1 and α-PV as Cro p 2).ConclusionFish-allergic individuals may be at risk of an allergy to crocodile and should seek specialist advice before consuming crocodilian meat.
Project description:House dust mites (HDMs) belong to the most potent indoor allergen sources worldwide and are associated with allergic manifestations in the respiratory tract and the skin. Here we studied the importance of the high-molecular-weight group 11 allergen from Dermatophagoides pteronyssinus (Der p 11) in HDM allergy. Sequence analysis showed that Der p 11 has high homology to paramyosins from mites, ticks, and other invertebrates. A synthetic gene coding for Der p 11 was expressed in Escherichia coli and rDer p 11 purified to homogeneity as folded, alpha-helical protein as determined by circular dichroism spectroscopy. Using antibodies raised against rDer p 11 and immunogold electron microscopy, the allergen was localized in the muscle beneath the skin of mite bodies but not in feces. IgE reactivity of rDer p 11 was tested with sera from HDM-allergic patients from Europe and Africa in radioallergosorbent test-based dot-blot assays. Interestingly, we found that Der p 11 is a major allergen for patients suffering from atopic dermatitis (AD), whereas it is only a minor allergen for patients suffering from respiratory forms of HDM allergy. Thus, rDer p 11 might be a useful serological marker allergen for the identification of a subgroup of HDM-allergic patients suffering from HDM-associated AD.
Project description:Seasonal allergic rhinitis (SAR) is a complex disease that is caused by many interacting genes and environmental factors. It is also an excellent model disease for clinical studies; it is common, it is seasonal, and since it takes place in the nasal cavity it can be studied in vivo non-invasively. Furthermore, the key disease cell, the Th2 cell is known. We study SAR using allergen-challenged CD4+ cells from allergic patients.
Project description:Allergen-stimulated T cells from hen’s egg-allergic children were analyzed to identify genes that are specifically up-regulated in these cells. Keywords: disease state analysis
Project description:Gene expression (Npatients = 21, Ncontrols = 21) of CD4+ T-cells failed to seperate patients with seasonal allergic rhinitis (SAR) and healthy controls in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen for 7 days.
Project description:BackgroundLipid transfer proteins (LTP) are associated with a wide range of severity of allergic reactions. However, the risk factors associated with this severity are not fully understood.ObjectivesTo describe the clinical characteristics of peach-allergic patients due to LTP sensitization and analyze the relationship between the severity of the reactions and patients' sensitization profiles.MethodsA retrospective study of peach-allergic patients was performed. Patients were classified into LTP-monoallergic (only peach allergy) or LTP-Syndrome (peach allergy and allergy to other plants-foods related with LTP). Symptoms with Rosaceae family and other related plant foods, skin prick tests (SPTs), and IgE values were recorded.ResultsSeventy-one patients were included, 46.5% suffering from anaphylaxis, 32.3% from urticaria angioedema, and 21.2% from oral allergy syndrome. Six had monoallergy to LTP and 65 LTP syndrome. Clinical severity showed no differences according to peach SPT wheal size or Pru p 3 IgE levels. We also found no differences between the components of LTP-containing foods analyzed, the number of LTPs recognized, and the severity of symptoms. However, anaphylaxis was more frequent in patients with concomitant allergies to ≥3 groups of plant foods.ConclusionsLTP syndrome was the most common presentation in patients with Rosaceae food allergy. The severity of the reactions was not related to peach SPT wheal size or sIgE levels to Pru p 3, but concomitant allergies to ≥3 plant food groups could be a good marker of severity.
Project description:Gene expression (Npatients = 21, Ncontrols = 21) of CD4+ T-cells failed to seperate patients with seasonal allergic rhinitis (SAR) and healthy controls in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen for 7 days. PBMCs from 21 patients (P) and 21 healthy controls (H) were challenged with grass pollen for 7 days. Diluent challenged control samples were obtained from all subjects. CD4+ cells were purified by MACS.
Project description:BackgroundPeanut-allergic patients from the Mediterranean region are predominantly sensitized to the lipid transfer protein (LTP) Ara h 9, and the peach LTP Pru p 3 seems to be the primary sensitizer. However, LTP sensitization in peanut allergy is not a predictive marker for clinically relevant symptoms.ObjectiveWe aimed to identify sequential epitopes of IgE and IgG4 from Pru p 3 and Ara h 9 in peach-allergic patients sensitized to peanuts. We also sought to determine the differences in IgE and IgG4 binding between patients who had developed peanut allergy and those tolerating peanuts.MethodsA total of 46 peach-allergic patients sensitized to peanuts were selected. A total of 35 patients were allergic to peanuts (peanut-allergic group) and 11 were tolerant to peanuts (peanut-tolerant group). We measured sIgE and sIgG4 in peanut, peach, and their recombinant allergen (Ara h 1, Ara h 2, Ara h 3, Ara h 8, and Ara h 9) with fluorescence enzyme immunoassay. We examined the IgE and IgG4 binding to sequential epitopes using a peptide microarray corresponding to linear sequences of the LTPs Ara h 9 and Pru p 3 with a library of overlapping peptides with a length of 20 amino acids (aa) and an offset of 3 aa.ResultsThe frequency and the intensity of IgE recognition of Ara h 9 and Pru p 3 peptides were higher in the peanut-tolerant group than in the peanut-allergic group. We found four Ara h 9 peptides (p4, p14, p21, and p25) and four Pru p 3 peptides (p1, p3, p21, and p24) with a significantly elevated IgE recognition in peanut-tolerant patients. Only one peptide of Ara h 9 (p4) recognized by IgG4 was significantly elevated in the peanut-tolerant group. The IgG4/IgE ratio of Ara h 9 peptide 4 was significantly higher in peanut-tolerant patients than in peanut-allergic patients, while no significant differences were observed in the IgG4/IgE ratio of this peptide in Pru p 3.ConclusionAlthough we found significant differences in IgE and IgG4 recognition of Ara h 9 and Pru p 3 between peanut-tolerant and peanut-allergic patients (all of whom were allergic to peach), polyclonal IgE peptide recognition of both LTPs was observed in peach-allergic patients tolerating peanuts. However, the IgG4 blocking antibodies against Ara h 9 peptide 4 could provide an explanation for the absence of clinical reactivity in peanut-tolerant peach-allergic patients. Further studies are needed to validate the usefulness of IgG4 antibodies against Ara h 9 peptide 4 for peanut allergy diagnosis.
Project description:BACKGROUND:Mugwort pollen allergens represent the main cause of pollinosis in late summer. The major allergen, Art v 1, contains only one single immunodominant, solely HLA-DR-restricted T cell epitope (Art v 125-36). The frequency of HLA-DRB1*01 is highly increased in mugwort-allergic individuals and HLA-DR1 serves as restriction element for Art v 125-36. However, Art v 125-36 also binds to HLA-DR4 with high affinity and DR1-restricted Art v 125-36 -specific T cell receptors can be activated by HLA-DR4 molecules. To understand the predominance of HLA-DR1 in mugwort allergy in spite of the degeneracy in HLA/peptide-binding and TCR-recognition, we investigated the molecular background of Art v 125-36 /MHC/TCR interactions in the context of HLA-DR1 compared to -DR4. RESULTS:The majority of Art v 125-36 -specific T cell lines and clones from HLA-DR1 carrying, mugwort pollen-allergic donors reacted to synthetic and naturally processed Art v 1-peptides when presented by HLA-DR1 or HLA-DR4 expressing antigen presenting cells. However, at limiting peptide concentrations DR1 was more effective in T cell stimulation. In addition, the minimal epitope for 50% of Art v 125-36 -specific T cells was shorter for DR1 than for DR4. In vitro binding assays of Art v 125-36 mutant peptides to isolated DR1- and DR4-molecules indicated similar binding capacities and use of the same register. In silico simulation of Art v 125-36 binding to HLA-DR1 and -DR4 suggested similar binding of the central part of the peptide to either molecule, but a higher flexibility of the N- and C-terminal amino acids and detachment at the C-terminus in HLA-DR1. CONCLUSIONS:The predominance of HLA-DR1 in the response to Art v 125-36 may be explained by subtle conformation changes of the peptide bound to DR1 compared to DR4. Computer simulation supported our experimental data by demonstrating differences in peptide mobility within the HLA-DR complex that may influence TCR-binding. We suggest that the minor differences observed in vitro may be more relevant in the microenvironment in vivo, so that only presentation by HLA-DR1, but not -DR4 permits successful T cell activation.