Project description:Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a crucial innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of 'iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease.
Project description:BackgroundThe mitochondrial genomes (mitogenomes) of metazoans generally include the same set of protein-coding genes, which ensures the homology of mitochondrial genes between species. The mitochondrial genes are often used as reference data for species identification based on genetic data (DNA barcoding). The need for such reference data has been increasing due to the application of environmental DNA (eDNA) analysis for environmental assessments. Recently, the number of publicly available sequence reads obtained with next-generation sequencing (NGS) has been increasing in the public database (the NCBI Sequence Read Archive, SRA). Such freely available NGS reads would be promising sources for assembling mitochondrial protein-coding genes (mPCGs) of organisms whose mitochondrial genes are not available in GenBank. The present study aimed to assemble annelid mPCGs from raw data deposited in the SRA.MethodsThe recent progress in the classification of Annelida was briefly introduced. In the present study, the mPCGs of 32 annelid species of 19 families in clitellates and allies in Sedentaria (echiurans and polychaetes) were newly assembled from the reads deposited in the SRA. Assembly was performed with a recently published pipeline mitoRNA, which includes cycles of Bowtie2 mapping and Trinity assembly. Assembled mPCGs were deposited in GenBank as Third Party Data (TPA) data. A phylogenetic tree was reconstructed with maximum likelihood (ML) analysis, together with other mPCGs deposited in GenBank.Results and discussionmPCG assembly was largely successful except for Travisia forbesii; only four genes were detected from the assembled contigs of the species probably due to the reads targeting its parasite. Most genes were largely successfully obtained, whereas atp8, nad2, and nad4l were only successful in 22-24 species. The high nucleotide substitution rates of these genes might be relevant to the failure in the assembly although nad6, which showed a similarly high substitution rate, was successfully assembled. Although the phylogenetic positions of several lineages were not resolved in the present study, the phylogenetic relationships of some polychaetes and leeches that were not inferred by transcriptomes were well resolved probably due to a more dense taxon sampling than previous phylogenetic analyses based on transcriptomes. Although NGS data are generally better sources for resolving phylogenetic relationships of both higher and lower classifications, there are ensuring needs for specific loci of the mitochondrial genes for analyses that do not require high resolutions, such as DNA barcoding, eDNA, and phylogenetic analysis among lower taxa. Assembly from publicly available NGS reads would help design specific primers for the mitochondrial gene sequences of species, whose mitochondrial genes are hard to amplify by Sanger sequencing using universal primers.
Project description:Transthyretin amyloid cardiomyopathy (ATTR-AC) is an under-recognized and underdiagnosed disease. Although traditionally considered a rare condition, the epidemiology of the disease is rapidly changing due to the possibility of non-invasive diagnosis through cardiac scintigraphy with bone tracers and novel disease-modifying treatments providing survival advantages. Nevertheless, many questions and grey areas have to be addressed, such as the natural history of ATTR-AC, the role and implications of genotype-phenotype interactions, the best clinical management, prognostic stratification and the most appropriate treatments, including those already recommended for patients with heart failure. Clinicians have to cope with old beliefs and evolving concepts in ATTR-AC. A wide horizon of possibilities for physicians of many specialties is unfolding and awaits discovery.
Project description:BackgroundChronic inflammation is a risk factor for colorectal cancer and polymorphisms in the inflammatory genes could modulate the levels of inflammation. We have investigated ten single nucleotide polymorphisms (SNPs) in the following inflammation-related genes: TLR4 (Asp299Gly), CD14 (-260 T>C), MCP1 (-2518 A>G), IL12A (+7506 A>T, +8707 A>G, +9177 T>A, +9508 G>A), NOS2A (+524T>C), TNF (-857C>T), and PTGS1 (V444I) in 377 colorectal (CRC) cancer cases and 326 controls from Barcelona (Spain).ResultsThere was no statistically significant association between the SNPs investigated and colorectal cancer risk.ConclusionThe lack of association may show that the inflammatory genes selected for this study are not involved in the carcinogenic process of colorectum. Alternatively, the negative results may derive from no particular biological effect of the analysed polymorphisms in relation to CRC. Otherwise, the eventual biological effect is so little to go undetected, unless analysing a much larger sample size.
Project description:In human, nearly half of the known microRNAs (miRNAs) are encoded within the introns of protein-coding genes. The embedment of these miRNA genes within the sequences of protein-coding genes alludes to a possible functional relationship between intronic miRNAs and their hosting genes. Several studies, using predicted targets, suggested that intronic miRNAs influence their hosts' function either antagonistically or synergistically. New experimental data of miRNA expression patterns and targets enable exploring this putative association by relying on actual data rather than on predictions. Here, our analysis based on currently available experimental data implies that the potential functional association between intronic miRNAs and their hosting genes is limited. For host-miRNA examples where functional associations were detected, it was manifested by either autoregulation, common targets of the miRNA and hosting gene, or through the targeting of transcripts participating in pathways in which the host gene is involved. This low prevalence of functional association is consistent with our observation that many intronic miRNAs have independent transcription start sites and are not coexpressed with the hosting gene. Yet, the intronic miRNAs that do show functional association with their hosts were found to be more evolutionarily conserved compared to other intronic miRNAs. This might suggest a selective pressure to maintain this architecture when it has a functional consequence.
Project description:The mdm2 gene is a target for transcriptional activation by the p53 tumor suppressor gene product. Previous work has revealed that the mouse mdm2 gene contains two promoters: one is located upstream to the gene and is active in the absence of p53, the other resides within the first intron and requires p53 for transcriptional activity. To determine whether this unique promoter activation pattern is biologically important, we investigated the structure and function of the corresponding region of the human mdm2 (hmdm2) gene. We report here that the hmdm2 gene also contains an intronic, p53-dependent promoter. The structural features of this promoter are highly conserved between mouse and man, as opposed to the lack of conservation of the first exon. This promoter is triggered in vivo in the presence of activated wild type p53, leading to the production of novel mRNA species. The intronic hmdm2 promoter contains two tandem p53 binding elements. Deletion analysis suggests that optimal promoter activity requires the simultaneous binding of p53 to both elements; this may serve to prevent premature triggering of the promoter by p53.
Project description:An efficient strategy to develop a dense set of single-nucleotide polymorphism (SNP) markers is to take advantage of the human genome sequencing effort currently under way. Our approach is based on the fact that bacterial artificial chromosomes (BACs) and P1-based artificial chromosomes (PACs) used in long-range sequencing projects come from diploid libraries. If the overlapping clones sequenced are from different lineages, one is comparing the sequences from 2 homologous chromosomes in the overlapping region. We have analyzed in detail every SNP identified while sequencing three sets of overlapping clones found on chromosome 5p15.2, 7q21-7q22, and 13q12-13q13. In the 200.6 kb of DNA sequence analyzed in these overlaps, 153 SNPs were identified. Computer analysis for repetitive elements and suitability for STS development yielded 44 STSs containing 68 SNPs for further study. All 68 SNPs were confirmed to be present in at least one of the three (Caucasian, African-American, Hispanic) populations studied. Furthermore, 42 of the SNPs tested (62%) were informative in at least one population, 32 (47%) were informative in two or more populations, and 23 (34%) were informative in all three populations. These results clearly indicate that developing SNP markers from overlapping genomic sequence is highly efficient and cost effective, requiring only the two simple steps of developing STSs around the known SNPs and characterizing them in the appropriate populations.
Project description:After laying their eggs and refilling the egg chamber, sea turtles scatter sand extensively around the nest site. This is presumed to camouflage the nest, or optimize local conditions for egg development, but a consensus on its function is lacking. We quantified activity and mapped the movements of hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys coriacea) turtles during sand-scattering. For leatherbacks, we also recorded activity at each sand-scattering position. For hawksbills, we recorded breathing rates during nesting as an indicator of metabolic investment and compared with published values for leatherbacks. Temporal and inferred metabolic investment in sand-scattering was substantial for both species. Neither species remained near the nest while sand-scattering, instead moving to several other positions to scatter sand, changing direction each time, progressively displacing themselves from the nest site. Movement patterns were highly diverse between individuals, but activity at each sand-scattering position changed little between completion of egg chamber refilling and return to the sea. Our findings are inconsistent with sand-scattering being to directly camouflage the nest, or primarily for modifying the nest-proximal environment. Instead, they are consistent with the construction of a series of dispersed decoy nests that may reduce the discovery of nests by predators.
Project description:This cross-sectional study was aimed at determining the allele frequencies for the CYP2C19*2, CYP2C19*3, CYP2D6*10 and PON1 (rs662) polymorphisms in the Puerto Rican population. The CYP2C19, CYP2D6 and PON1 genes are known to be associated with functional changes in drug metabolism and activation. Individuals carrying the aforementioned polymorphisms are at a higher risk of suffering from drug-induced adverse events and/ or unresponsiveness from a variety of drugs that includes antidepressants, atypical antipsychotics and antiplatelet compounds. Information on the frequency of these polymorphisms is more commonly found on homogeneous populations, but is scarce in highly heterogeneous populations like Hispanics, as in the case of Puerto Ricans. Genotyping was carried out in 100 genomic DNA samples from dried blood spots supplied by the Puerto Rican Newborn Screening program using Taqman® Genotyping Assays. The Minor Allele Frequencies (MAF) obtained were 9% for CYP2C19*2 and CYP2D6*10, 50% for PON1 (rs662), while the CYP2C19*3 variant was not detected in our study. Furthermore, Hardy Weinberg equilibrium analysis was assessed as well as a comparison between Puerto Rico and other reference populations using a Z-test for proportions. The observed allele and genotype frequencies on these relevant pharmacogenes in Puerto Ricans were more closely related to those early reported in two other reference populations of Americans (Mexicans and Colombians).
Project description:Synj2 (synaptojanin 2) encodes an inositol polyphosphate phosphatase that functions in recycling neurotransmitter vesicles and is implicated in spermatogenesis. Transcription of Synj2 is thought to occur from one of two promoters based on analysis of a variable 5' untranslated region. Clustering all known mouse Synj2 transcripts led us to uncover a novel subset of transcripts that appears to derive from a region located within intron 7. We identified two alternate splice variants emanating from use of this promoter. These alternate splice variants manifest developmental stage specificity and somatic versus gametic differences in expression.