Unknown

Dataset Information

0

A large-scale evaluation of computational protein function prediction.


ABSTRACT: Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.

SUBMITTER: Radivojac P 

PROVIDER: S-EPMC3584181 | biostudies-literature | 2013 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A large-scale evaluation of computational protein function prediction.

Radivojac Predrag P   Clark Wyatt T WT   Oron Tal Ronnen TR   Schnoes Alexandra M AM   Wittkop Tobias T   Sokolov Artem A   Graim Kiley K   Funk Christopher C   Verspoor Karin K   Ben-Hur Asa A   Pandey Gaurav G   Yunes Jeffrey M JM   Talwalkar Ameet S AS   Repo Susanna S   Souza Michael L ML   Piovesan Damiano D   Casadio Rita R   Wang Zheng Z   Cheng Jianlin J   Fang Hai H   Gough Julian J   Koskinen Patrik P   Törönen Petri P   Nokso-Koivisto Jussi J   Holm Liisa L   Cozzetto Domenico D   Buchan Daniel W A DW   Bryson Kevin K   Jones David T DT   Limaye Bhakti B   Inamdar Harshal H   Datta Avik A   Manjari Sunitha K SK   Joshi Rajendra R   Chitale Meghana M   Kihara Daisuke D   Lisewski Andreas M AM   Erdin Serkan S   Venner Eric E   Lichtarge Olivier O   Rentzsch Robert R   Yang Haixuan H   Romero Alfonso E AE   Bhat Prajwal P   Paccanaro Alberto A   Hamp Tobias T   Kaßner Rebecca R   Seemayer Stefan S   Vicedo Esmeralda E   Schaefer Christian C   Achten Dominik D   Auer Florian F   Boehm Ariane A   Braun Tatjana T   Hecht Maximilian M   Heron Mark M   Hönigschmid Peter P   Hopf Thomas A TA   Kaufmann Stefanie S   Kiening Michael M   Krompass Denis D   Landerer Cedric C   Mahlich Yannick Y   Roos Manfred M   Björne Jari J   Salakoski Tapio T   Wong Andrew A   Shatkay Hagit H   Gatzmann Fanny F   Sommer Ingolf I   Wass Mark N MN   Sternberg Michael J E MJ   Škunca Nives N   Supek Fran F   Bošnjak Matko M   Panov Panče P   Džeroski Sašo S   Šmuc Tomislav T   Kourmpetis Yiannis A I YA   van Dijk Aalt D J AD   ter Braak Cajo J F CJ   Zhou Yuanpeng Y   Gong Qingtian Q   Dong Xinran X   Tian Weidong W   Falda Marco M   Fontana Paolo P   Lavezzo Enrico E   Di Camillo Barbara B   Toppo Stefano S   Lan Liang L   Djuric Nemanja N   Guo Yuhong Y   Vucetic Slobodan S   Bairoch Amos A   Linial Michal M   Babbitt Patricia C PC   Brenner Steven E SE   Orengo Christine C   Rost Burkhard B   Mooney Sean D SD   Friedberg Iddo I  

Nature methods 20130127 3


Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for p  ...[more]

Similar Datasets

| S-EPMC6221071 | biostudies-literature
| S-EPMC8294856 | biostudies-literature
| S-EPMC6602452 | biostudies-literature
| S-EPMC2845582 | biostudies-literature
| S-EPMC3920302 | biostudies-literature
| S-EPMC11262835 | biostudies-literature
| S-EPMC10680702 | biostudies-literature
| S-EPMC10445198 | biostudies-literature
| S-EPMC4079911 | biostudies-literature
| S-EPMC8262706 | biostudies-literature