Project description:Rat corneal allograft rejection models were established to investigate the effects and mechanisms of resveratrol on corneal allograft rejection after corneal transplantation.
Project description:T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti-IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4- and anti-CD8-mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation.
Project description:BackgroundCluster of differentiation 4 positive (CD4+) T cells play an important role in corneal graft rejection, especially the dynamic balance between regulatory T cells and helper T cells. This study aims to explore the upstream and downstream regulatory mechanisms of Th17 cell differentiation-mediated corneal allograft rejection.MethodsBy establishing rat corneal allograft transplantation model, transcriptome analysis was carried out to screen the differentially expressed genes related to T helper 17 (Th17) cell differentiation, and then cell experiments were used to verify the effect of miR-673-5p/Janus Kinase 2 (JAK2) signal on naïve CD4+ T cell differentiation and the proliferation, migration, and tube formation ability of human umbilical vein endothelial cells (HUVECs). Finally, the role of miR-673-5p/JAK2 signal in corneal allograft rejection was verified by animal model in vivo.ResultsThe results showed that JAK2/STAT3 signaling activation-mediated Th17 cell differentiation was significantly up-regulated during corneal allograft rejection, and miR-673-5p expression was down-regulated after corneal allograft rejection. Low expression of miR-673-5p promoted Th17 cell differentiation by up-regulating JAK2, and then promoted placental growth factor (PLGF)mediated corneal neovascularization (CNV).ConclusionsThe results of this study suggested that low expression of miR-673-5p is a promoter of corneal allograft rejection. Overexpression of miR-673-5p can improve the survival rate of corneal allografts by inhibiting the differentiation and maturation of Th17 cells mediated by JAK2/STAT3 signaling.
Project description:Effectively promoting corneal allograft survival remains a challenge in corneal transplantation. The emerging therapeutic agents with high pharmacological activities and their appropriate administration routes provide attractive solutions. In the present study, a celastrol-loaded positive nanomedicine (CPNM) was developed to enhance corneal penetration and to promote corneal allograft survival. The in vitro, in vivo and ex vivo results demonstrated the good performance of CPNM prolonging the retention time on ocular surface and opening the tight junction in cornea, which resulted in enhanced corneal permeability of celastrol. Both in vitro and in vivo results demonstrated that celastrol inhibited the recruitment of M1 macrophage and the expression of TLR4 in corneal allografts through the TLR4/MyD88/NF-κB pathway, thereby significantly decreasing secretion of multiple pro-inflammatory cytokines to promote corneal allograft survival. This is the first celastrol-based topical instillation against corneal allograft rejection to provide treatment more potent than conventional eye drops for ocular anterior segment diseases.
Project description:Corneal transplantation is the most prevalent form of tissue transplantation. The success of corneal transplantation mainly relies on the integrity of corneal endothelial cells (CEnCs), which maintain graft transparency. CEnC density decreases significantly after corneal transplantation even in the absence of graft rejection. To date, different strategies have been used to enhance CEnC survival. The neuropeptide vasoactive intestinal peptide (VIP) improves CEnC integrity during donor cornea tissue storage and protects CEnCs against oxidative stress-induced apoptosis. However, little is known about the effect of exogenous administration of VIP on corneal transplant outcomes. We found that VIP significantly accelerates endothelial wound closure and suppresses interferon-γ- and tumor necrosis factor-α-induced CEnC apoptosis in vitro in a dose-dependent manner. In addition, we found that intracameral administration of VIP to mice undergoing syngeneic corneal transplantation with endothelial injury increases CEnC density and decreases graft opacity scores. Finally, using a mouse model of allogeneic corneal transplantation, we found for the first time that treatment with VIP significantly suppresses posttransplantation CEnC loss and improves corneal allograft survival.
Project description:We previously described that in a rat model of heart transplantation tolerance was dependent on CD8+CD45RClow Tregs that over-expressed fibrinogen-like protein 2 (FGL2)/fibroleukin. Little is known on the immunoregulatory properties of FGL2. Here we analyzed the transplantation tolerance mechanisms that are present in Lewis 1A rats treated with FGL2. Over-expression of FGL2 in vivo through adenovirus associated virus -mediated gene transfer without any further treatment resulted in inhibition of cardiac allograft rejection. Adoptive cell transfer of splenocytes from FGL2-treated rats with long-term graft survival (> 80 days) in animals that were transplanted with cardiac allografts inhibited acute and chronic organ rejection in a donor-specific and transferable tolerance manner, since iterative adoptive transfer up to a sixth consecutive recipient resulted in transplantation tolerance. Adoptive cell transfer also efficiently inhibited anti-donor antibody production. Analysis of all possible cell populations among splenocytes revealed that B lymphocytes were sufficient for this adoptive cell tolerance. These B cells were also capable of inhibiting the proliferation of CD4+ T cells in response to allogeneic stimuli. Moreover, gene transfer of FGL2 in B cell deficient rats did not prolong graft survival. Thus, this is the first description of FGL2 resulting in long-term allograft survival. Furthermore, allograft tolerance was transferable and B cells were the main cells responsible for this effect.
Project description:PurposeEndogenous and exogenous stressors, including nutritional challenges, may alter circadian rhythms in the cornea. This study aimed to determine the effects of high fructose intake (HFI) on circadian homeostasis in murine cornea.MethodsCorneas of male C57BL/6J mice subjected to 10 days of HFI (15% fructose in drinking water) were collected at 3-hour intervals over a 24-hour circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing. Rhythmic transcriptional data were analyzed to determine the phase, rhythmicity, unique signature, metabolic pathways, and cell signaling pathways of transcripts with temporally coordinated expression. Corneas of HFI mice were collected for whole-mounted techniques after immunofluorescent staining to quantify mitotic cell number in the epithelium and trafficking of neutrophils and γδ-T cells to the limbal region over a circadian cycle.ResultsHFI significantly reprogrammed the circadian transcriptomic profiles of the normal cornea and reorganized unique temporal and clustering enrichment pathways, but did not affect core-clock machinery. HFI altered the distribution pattern and number of corneal epithelial mitotic cells and enhanced recruitment of neutrophils and γδ-T cell immune cells to the limbus across a circadian cycle. Cell cycle, immune function, metabolic processes, and neuronal-related transcription and associated pathways were altered in the corneas of HFI mice.ConclusionsHFI significantly reprograms diurnal oscillations in the cornea based on temporal and spatial distributions of epithelial mitosis, immune cell trafficking, and cell signaling pathways. Our findings reveal novel molecular targets for treating pathologic alterations in the cornea after HFI.
Project description:Heart transplantation is the optimal therapy for patients with end-stage heart disease, but its long-term outcome remains inadequate. Recent studies have highlighted the importance of the melanocortin receptors (MCRs) in inflammation, but how MCRs regulate the balance between alloreactive T cells and Tregs, and whether they impact chronic heart transplant rejection, is unknown. Here, we found that Tregs express MC2R, and MC2R expression was highest among all MCRs by Tregs. Our data indicate that adrenocorticotropic hormone (ACTH), the sole ligand for MC2R, promoted the formation of Tregs by increasing the expression of IL-2Rα (CD25) in CD4+ T cells and activation of STAT5 in CD4+CD25+ T cells. ACTH treatment also improved the survival of heart allografts and increased the formation of Tregs in CD28KO mice. ACTH treatment synergized with the tolerogenic effect of CTLA-4-Ig, resulting in long-term survival of heart allografts and an increase in intragraft Tregs. ACTH administration also demonstrated higher prolongation of heart allograft survival in transgenic mouse recipients with both complete KO and conditional KO of PI3Kγ in T cells. Finally, ACTH treatment reduced chronic rejection markedly. These data demonstrate that ACTH treatment improved heart transplant outcomes, and this effect correlated with an increase in Tregs.
Project description:Modulation of alloimmune responses is critical to improving transplant outcome and promoting long-term graft survival. To determine mechanisms by which a nonhematopoietic erythropoietin (EPO) derivative, carbamylated EPO (CEPO), regulates innate and adaptive immune cells and affects renal allograft survival, we utilized a rat model of fully MHC-mismatched kidney transplantation. CEPO administration markedly extended the survival time of kidney allografts compared with the transplant alone control group. This therapeutic effect was inhibited when the recipients were given LY294002, a selective inhibitor of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway or anti-EPO receptor (EPOR) antibody, in addition to CEPO. In vitro, CEPO inhibited the differentiation and function of dendritic cells and modulated their production of pro-inflammatory and anti-inflammatory cytokines, along with activating the PI3K/AKT signaling pathway and increasing EPOR mRNA and protein expression by these innate immune cells. Moreover, after CD4+ T cells were exposed to CEPO the Th1/Th2 ratio decreased and the regulatory T cell (Treg)/Th17 ratio increased. These effects were abolished by LY294002 or anti-EPOR antibody, suggesting that CEPO regulates immune responses and promotes kidney allograft survival by activating the PI3K/AKT signaling pathway in an EPOR-dependent manner. The immunomodulatory and specific signaling pathway effects of CEPO identified in this study suggest a potential therapeutic approach to promoting kidney transplant survival.