Project description:Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.
Project description:Leukocyte adhesion deficiency type I (LAD-I) is a primary immunodeficiency caused by mutations in the ITGB2 gene and is characterized by recurrent and life-threatening bacterial infections. These mutations lead to defective or absent expression of β2 integrins on the leukocyte surface, compromising adhesion and extravasation at sites of infection. Three different lentiviral vectors (LVs) conferring ubiquitous or preferential expression of CD18 in myeloid cells were constructed and tested in human and mouse LAD-I cells. All three hCD18-LVs restored CD18 and CD11a membrane expression in LAD-I patient-derived lymphoblastoid cells. Corrected cells recovered the ability to aggregate and bind to sICAM-1 after stimulation. All vectors induced stable hCD18 expression in hematopoietic cells from mice with a hypomorphic Itgb2 mutation (CD18(HYP)), both in vitro and in vivo after transplantation of corrected cells into primary and secondary CD18(HYP) recipients. hCD18(+) hematopoietic cells from transplanted CD18(HYP) mice also showed restoration of mCD11a surface co-expression. The analysis of in vivo neutrophil migration in CD18(HYP) mice subjected to two different inflammation models demonstrated that the LV-mediated gene therapy completely restored neutrophil extravasation in response to inflammatory stimuli. Finally, these vectors were able to correct the phenotype of human myeloid cells derived from CD34(+) progenitors defective in ITGB2 expression. These results support for the first time the use of hCD18-LVs for the treatment of LAD-I patients in clinical trials.
Project description:ObjectiveStudies that demonstrate an association between rheumatoid arthritis (RA) and dysbiotic oral microbiomes are often confounded by the presence of extensive periodontitis in these individuals. This study was undertaken to investigate the role of RA in modulating the periodontal microbiome by comparing periodontally healthy individuals with RA to those without RA.MethodsSubgingival plaque was collected from periodontally healthy individuals (22 with RA and 19 without RA), and the 16S gene was sequenced on an Illumina MiSeq platform. Bacterial biodiversity and co-occurrence patterns were examined using the QIIME and PhyloToAST pipelines.ResultsThe subgingival microbiomes differed significantly between patients with RA and controls based on both community membership and the abundance of lineages, with 41.9% of the community differing in abundance and 19% in membership. In contrast to the sparse and predominantly congeneric co-occurrence networks seen in controls, RA patients revealed a highly connected grid containing a large intergeneric hub anchored by known periodontal pathogens. Predictive metagenomic analysis (PICRUSt) demonstrated that arachidonic acid and ester lipid metabolism pathways might partly explain the robustness of this clustering. As expected from a periodontally healthy cohort, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were not significantly different between groups; however, Cryptobacterium curtum, another organism capable of producing large amounts of citrulline, emerged as a robust discriminant of the microbiome in individuals with RA.ConclusionOur data demonstrate that the oral microbiome in RA is enriched for inflammophilic and citrulline-producing organisms, which may play a role in the production of autoantigenic citrullinated peptides in RA.
Project description:Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, mutations are found in ITGB2, the gene that encodes the ? subunit of the ?(2) integrins. This syndrome is characterized directly after birth by delayed separation of the umbilical cord. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Le(a) and Le(b) blood group antigens. Finally, in LAD-III (also called LAD-I/variant) the conformational activation of the hematopoietically expressed ? integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells that is involved in the regulation of ? integrin conformation.
Project description:Leukocyte adhesion deficiency type I (LAD-I), a disease syndrome associated with frequent microbial infections, is caused by mutations on the CD18 subunit of β₂ integrins. LAD-I is invariably associated with severe periodontal bone loss, which historically has been attributed to the lack of neutrophil surveillance of the periodontal infection. We provide an alternative mechanism by showing that the cytokine interleukin-17 (IL-17) plays a major role in the oral pathology of LAD-I. Defective neutrophil recruitment in LAD-I patients or in LFA-1 (CD11a/CD18)-deficient mice--which exhibit the LAD-I periodontal phenotype--was associated with excessive production of predominantly T cell-derived IL-17 in the periodontal tissue, although innate lymphoid cells also contributed to pathological IL-17 elevation in the LFA-1-deficient mice. Local treatment with antibodies to IL-17 or IL-23 in LFA-1-deficient mice not only blocked inflammatory periodontal bone loss but also caused a reduction in the total bacterial burden, suggesting that the IL-17-driven pathogenesis of LAD-I periodontitis leads to dysbiosis. Therefore, our findings support an IL-17-targeted therapy for periodontitis in LAD-I patients.
Project description:Recent successes in treating genetic immunodeficiencies have demonstrated the therapeutic potential of stem cell gene therapy. However, the use of gammaretroviral vectors in these trials led to insertional activation of nearby oncogenes and leukemias in some study subjects, prompting studies of modified or alternative vector systems. Here we describe the use of foamy virus vectors to treat canine leukocyte adhesion deficiency (CLAD). Four of five dogs with CLAD that received nonmyeloablative conditioning and infusion of autologous, CD34+ hematopoietic stem cells transduced by a foamy virus vector expressing canine CD18 had complete reversal of the CLAD phenotype, which was sustained more than 2 years after infusion. In vitro assays showed correction of the lymphocyte proliferation and neutrophil adhesion defects that characterize CLAD. There were no genotoxic complications, and integration site analysis showed polyclonality of transduced cells and a decreased risk of integration near oncogenes as compared to gammaretroviral vectors. These results represent the first successful use of a foamy virus vector to treat a genetic disease, to our knowledge, and suggest that foamy virus vectors will be effective in treating human hematopoietic diseases.
Project description:Ex vivo gene therapy procedures targeting hematopoietic stem and progenitor cells (HSPCs) predominantly utilize lentivirus-based vectors for gene transfer. We provide the first pre-clinical evidence of the therapeutic utility of a foamy virus vector (FVV) for the genetic correction of human leukocyte adhesion deficiency type 1 (LAD-1), an inherited primary immunodeficiency resulting from mutation of the β2 integrin common chain, CD18. CD34+ HSPCs isolated from a severely affected LAD-1 patient were transduced under a current good manufacturing practice-compatible protocol with FVV harboring a therapeutic CD18 transgene. LAD-1-associated cellular chemotactic defects were ameliorated in transgene-positive, myeloid-differentiated LAD-1 cells assayed in response to a strong neutrophil chemoattractant in vitro. Xenotransplantation of vector-transduced LAD-1 HSPCs in immunodeficient (NSG) mice resulted in long-term (∼5 months) human cell engraftment within murine bone marrow. Moreover, engrafted LAD-1 myeloid cells displayed in vivo levels of transgene marking previously reported to ameliorate the LAD-1 phenotype in a large animal model of the disease. Vector insertion site analysis revealed a favorable vector integration profile with no overt evidence of genotoxicity. These results coupled with the unique biological features of wild-type foamy virus support the development of FVVs for ex vivo gene therapy of LAD-1.
Project description:A patient with leukocyte adhesion deficiency type 1 (LAD1) had severe periodontitis and an intractable, deep, nonhealing sacral wound. We had previously found a dominant interleukin-23-interleukin-17 signature at inflamed sites in humans with LAD1 and in mouse models of the disorder. Blockade of this pathway in mouse models has resulted in resolution of the immunopathologic condition. We treated our patient with ustekinumab, an antibody that binds the p40 subunit of interleukin-23 and interleukin-12 and thereby blocks the activity of these cytokines, inhibiting interleukin-23-dependent production of interleukin-17. After 1 year of therapy, our patient had resolution of his inflammatory lesions without serious infections or adverse reactions. Inhibition of interleukin-23 and interleukin-17 may have a role in the management of LAD1. (Funded by the National Institute of Allergy and Infectious Diseases and others.).