Project description:Recently, loss-of-function mutations in FLG, the human gene encoding profilaggrin and filaggrin, have been identified as the cause of the common skin condition ichthyosis vulgaris (which is characterised by dry, scaly skin). These mutations, which are carried by up to 10% of people, also represent a strong genetic predisposing factor for atopic eczema, asthma and allergies. Profilaggrin is the major component of the keratohyalin granules within epidermal granular cells. During epidermal terminal differentiation, the approximately 400 kDa profilaggrin polyprotein is dephosphorylated and rapidly cleaved by serine proteases to form monomeric filaggrin (37 kDa), which binds to and condenses the keratin cytoskeleton and thereby contributes to the cell compaction process that is required for squame biogenesis. Within the squames, filaggrin is citrullinated, which promotes its unfolding and further degradation into hygroscopic amino acids, which constitute one element of natural moisturising factor. Loss of profilaggrin or filaggrin leads to a poorly formed stratum corneum (ichthyosis), which is also prone to water loss (xerosis). Recent human genetic studies strongly suggest that perturbation of skin barrier function as a result of reduction or complete loss of filaggrin expression leads to enhanced percutaneous transfer of allergens. Filaggrin is therefore in the frontline of defence, and protects the body from the entry of foreign environmental substances that can otherwise trigger aberrant immune responses.
Project description:Background and objectives: The purpose of this study was to confirm the effect of Galgeunhwanggeumhwangryeon-tang (GGRT) on the skin barrier integrity and inflammation in an atopic dermatitis-like animal model. Materials and Methods: The model was established using lipid barrier elimination (LBE) in BALB/c mice. Ceramide 3B, a control drug, and GGRT were applied to the skin of LBE mice. Gross observation and histological examination were combined with measurement of skin score, trans-epidermal water loss, and pH. The expression of filaggrin, kallikrein-related peptidase 7 (KLK7), protease-activated receptor-2 (PAR-2), thymic stromal lymphopoietin (TSLP), and interleukin 4 (IL-4) was examined. Results: The effect of GGRT on atopic dermatitis was estimated in silico using two individual gene sets of human atopic dermatitis. In animal experiments, GGRT treatment reduced atopic dermatitis-like symptoms, as confirmed via gross and histological observations, skin score, pH change, and trans-epidermal water loss. The expression level of filaggrin increased in the skin of GGRT-treated mice compared to that in the LBE group. The expression levels of KLK7, PAR2, TSLP, and IL-4 were decreased in GGRT-treated mice skin compared to those in LBE mice. Conclusions: We demonstrated that GGRT restored the skin barrier and reduced inflammatory reactions in a murine model of atopic dermatitis.
Project description:BackgroundFilaggrin is important for skin barrier function and is mutated in 15% to 20% of patients with atopic dermatitis.ObjectiveTo examine whether filaggrin deficiency predisposes to skin inflammation and epicutaneous sensitization with protein antigen.MethodsSkin histology in filaggrin-deficient flaky tail (ft)/ft mice and wild-type controls was assessed by Hematoxylin and Eosin (H&E) staining and immunohistochemistry. Cytokine mRNA expression was examined by quantitative RT-PCR. Serum antibody levels and splenocyte secretion of cytokines were measured by ELISA.ResultsThe ft/ft mice developed eczematous skin lesions after age 28 weeks and a progressive increase in serum IgE and IgG(1) levels. Normal-appearing skin from 8-week-old ft/ft mice had epidermal thickening and increased dermal infiltration with CD4(+) cells and expression of mRNA for IL-17, IL-6, and IL-23, but not IL-4, IL-13, or IFN-gamma. Lesional skin of 32-week-old ft/ft mice exhibited qualitatively similar, but more pronounced, changes, and elevated IL-4 mRNA levels. Epicutaneous application of ovalbumin to shaved skin of 8-week-old ft/ft mice, but not WT mice, resulted in increased epidermal thickening, dermal infiltration by CD4(+) cells but not eosinophils, and expression of IL-17, IL-6, IL-23, IL-4, and IFN-gamma, but not IL-5 or IL-13, mRNA. Splenocytes from epicutaneously sensitized ft/ft mice, but not controls, secreted cytokines in response to ovalbumin stimulation, and their sera, but not those of controls, contained ovalbumin-specific IgE and IgG(1) antibodies.ConclusionFilaggrin-deficient mice exhibit T(H)17-dominated skin inflammation and eczematous changes with age, and are permissive to epicutaneous sensitization with protein antigen.
Project description:BackgroundAtopic dermatitis (AD) is associated with epidermal barrier defects, dysbiosis, and skin injury caused by scratching. In particular, the barrier-defective epidermis in patients with AD with loss-of-function filaggrin mutations has increased IL-1α and IL-1β levels, but the mechanisms by which IL-1α, IL-1β, or both are induced and whether they contribute to the aberrant skin inflammation in patients with AD is unknown.ObjectiveWe sought to determine the mechanisms through which skin injury, dysbiosis, and increased epidermal IL-1α and IL-1β levels contribute to development of skin inflammation in a mouse model of injury-induced skin inflammation in filaggrin-deficient mice without the matted mutation (ft/ft mice).MethodsSkin injury of wild-type, ft/ft, and myeloid differentiation primary response gene-88-deficient ft/ft mice was performed, and ensuing skin inflammation was evaluated by using digital photography, histologic analysis, and flow cytometry. IL-1α and IL-1β protein expression was measured by means of ELISA and visualized by using immunofluorescence and immunoelectron microscopy. Composition of the skin microbiome was determined by using 16S rDNA sequencing.ResultsSkin injury of ft/ft mice induced chronic skin inflammation involving dysbiosis-driven intracellular IL-1α release from keratinocytes. IL-1α was necessary and sufficient for skin inflammation in vivo and secreted from keratinocytes by various stimuli in vitro. Topical antibiotics or cohousing of ft/ft mice with unaffected wild-type mice to alter or intermix skin microbiota, respectively, resolved the skin inflammation and restored keratinocyte intracellular IL-1α localization.ConclusionsTaken together, skin injury, dysbiosis, and filaggrin deficiency triggered keratinocyte intracellular IL-1α release that was sufficient to drive chronic skin inflammation, which has implications for AD pathogenesis and potential therapeutic targets.
Project description:We explored the regulation of filaggrin, cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) expression induced by urban particulate matter (PM) in human keratinocytes. In addition, we investigated the signaling pathways involved in PM-induced effects on COX2/PGE2 and filaggrin. PMs induced increases in COX2 expression and PGE2 production, and decreased filaggrin expression. These effects were attenuated by pretreatment with COX2 inhibitor and PGE2 receptor antagonist, or after transfection with siRNAs of the aryl hydrocarbon receptor (AhR), gp91phox and p47phox. Furthermore, PM-induced generation of reactive oxygen species (ROS) and NADPH oxidase activity was attenuated by pretreatment with an AhR antagonist (AhRI) or antioxidants. Moreover, Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38, and JNK, which then activated the downstream molecules NF-κB and AP-1, respectively. In vivo studies in PMs-treated mice showed that AhRI and apocynin (a Nox2 inhibitor) had anti-inflammatory effects by decreasing COX2 and increasing filaggrin expression. Our results reveal for the first time that PMs-induced ROS generation is mediated through the AhR/p47 phox/NADPH oxidase pathway, which in turn activates ERK1/2, p38/NF-κB and JNK/AP-1, and which ultimately induces COX2 expression and filaggrin downregulation. Up-regulated expression of COX2 and production of PGE2 may lead to impairment of skin barrier function.
Project description:Skin aspartic acid protease (SASPase) is believed to be a key enzyme involved in filaggrin processing during epidermal terminal differentiation. Since little is known about the regulation of SASPase function, the aim of this study was to identify involved protein partners in the process. Yeast two hybrid analyses using SASPase as bait against a human reconstructed skin library identified that the N-terminal domain of filaggrin 2 binds to the N-terminal fragment of SASPase. This interaction was confirmed in reciprocal yeast two hybrid screens and by Surface Plasmon Resonance analyses. Immunohistochemical studies in human skin, using specific antibodies to SASPase and the N-terminal domain of filaggrin 2, showed that the two proteins partially co-localized to the stratum granulosum. In vitro enzymatic assays showed that the N-terminal domain of filaggrin 2 enhanced the autoactivation of SASPase to its 14 kDa active form. Taken together, the data suggest that the N-terminal domain of filaggrin 2 regulates the activation of SASPase that may be a key event upstream of filaggrin processing to natural moisturizing factors in the human epidermis.
Project description:Background Filaggrin proteins are located in the skin and prevent epidermal water loss and impede the entry of micro-organisms, allergens and chemicals. Filaggrin null mutations are strongly associated with ichthyosis vulgaris and atopic dermatitis. Objective The authors aimed to investigate the association between filaggrin null mutations, atopic dermatitis and diabetes. Design A random sample of 3335 adults from the general population in Denmark was filaggrin-genotyped for R501X and 2282del4 null-mutations and questioned about atopic dermatitis and diabetes. Furthermore, two independent study populations of patients with type 1 (n=104) or 2 (n=774) diabetes were genotyped. Results In a crude data analysis, a positive association was detected between the filaggrin null genotype and, respectively, subjects from the general population who reported diabetes (p=0.04) and patients with established type 2 diabetes (p=0.073). Adjustment for age and gender resulted in significant associations for patients with type 2 diabetes (p=0.048) and subjects with self-reported diabetes (p=0.032). Conclusions Adult Danes with a filaggrin null genotype had a significantly increased prevalence of self-reported diabetes. This finding was replicated when an independent sample of Danish patients with established type 2 diabetes was compared with control subjects from the general population.
Project description:BackgroundIn addition to its involvement in both the innate and adaptive immune systems, vitamin D has been found to affect keratinocyte function and proliferation, suggesting a possible role for vitamin D in cutaneous allergic sensitization.ObjectiveTo explore the role of circulating vitamin D levels in allergic sensitization.MethodsSerum 25-hydroxyvitamin D (25(OH)D) levels were measured in a subset of children (N = 323) enrolled in the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children cohort, a prospective early life cohort of children with atopic dermatitis. Allergic sensitization was determined using skin prick testing, and FLG expression in the keratinocytes was measured by quantitative polymerase chain reaction. Multiple Poisson regression was used to evaluate interaction effects between serum 25(OH)D levels and FLG expression with sensitization load as the outcome.ResultsBlack participants had significantly lower mean levels of serum 25(OH)D compared with non-Black participants (29.3 vs 32.9 ng/mL; P < .001). FLG expression and sensitization load were negatively correlated in non-Black participants with 25(OH)D levels less than 27.2 ng/mL (Rho = -0.45; P = .02). No association between FLG expression and sensitization load was found in Black participants or participants with 25(OH)D levels greater than or equal to 27.2 ng/mL. Multiple Poisson regression models confirmed that 25(OH)D levels interact with FLG expression to affect sensitization load in non-Black participants.ConclusionDespite lower vitamin D levels in Black participants, sensitization load was associated with nonlesional skin FLG expression in non-Black, but not Black, children with low vitamin D levels. Thus, a complex interplay of factors determines the impact of vitamin D on allergic sensitization.
Project description:Atopic dermatitis (AD) is a common inflammatory skin disease affecting up to 20% of children and 3% of adults worldwide and is associated with dysregulation of the skin barrier. Although type 2 responses are implicated in AD, emerging evidence indicates a potential role for the IL-17A signaling axis in AD pathogenesis. In this study we show that in the filaggrin mutant mouse model of spontaneous AD, IL-17RA deficiency (Il17ra-/- ) resulted in severe exacerbation of skin inflammation. Interestingly, Il17ra-/- mice without the filaggrin mutation also developed spontaneous progressive skin inflammation with eosinophilia, as well as increased levels of thymic stromal lymphopoietin (TSLP) and IL-5 in the skin. Il17ra-/- mice have a defective skin barrier with altered filaggrin expression. The barrier dysregulation and spontaneous skin inflammation in Il17ra-/- mice was dependent on TSLP, but not the other alarmins IL-25 and IL-33. The associated skin inflammation was mediated by IL-5-expressing pathogenic effector Th2 cells and was independent of TCRγδ T cells and IL-22. An absence of IL-17RA in nonhematopoietic cells, but not in the hematopoietic cells, was required for the development of spontaneous skin inflammation. Skin microbiome dysbiosis developed in the absence of IL-17RA, with antibiotic intervention resulting in significant amelioration of skin inflammation and reductions in skin-infiltrating pathogenic effector Th2 cells and TSLP. This study describes a previously unappreciated protective role for IL-17RA signaling in regulation of the skin barrier and maintenance of skin immune homeostasis.
Project description:Skin barrier dysfunction, a defining feature of atopic dermatitis (AD), arises from multiple interacting systems. In AD, skin inflammation is caused by host-environment interactions involving keratinocytes as well as tissue-resident immune cells such as type 2 innate lymphoid cells, basophils, mast cells, and T helper type 2 cells, which produce type 2 cytokines, including IL-4, IL-5, IL-13, and IL-31. Type 2 inflammation broadly impacts the expression of genes relevant for barrier function, such as intracellular structural proteins, extracellular lipids, and junctional proteins, and enhances Staphylococcus aureus skin colonization. Systemic anti‒type 2 inflammation therapies may improve dysfunctional skin barrier in AD.