Project description:The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRβ bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.
Project description:Immune responsiveness declines with age in part due to the development of CD8(+) T cell clonal expansions (TCEs) that can dominate the peripheral T cell pool. Although some TCEs arise due to persistent Ag stimulation from chronic infections, others arise in the apparent absence of chronic infection. We have recently shown that this latter class of TCEs can arise over time from the memory CD8(+) T cell pool established by an acute viral infection. Unlike TCEs driven by chronic infections, these age-related TCEs do not display the phenotypic and in vitro functional characteristics of exhausted cells. However, the rate at which these age-related TCEs develop from the memory CD8(+) T cell pool, as well as their ability to mount a recall response to secondary pathogen challenge in vivo, is not known. In this study, we analyzed large cohorts of mice over time for the development of TCE following Sendai virus infection and found a progressive increase in the appearance of TCEs, such that most mice showed evidence of TCE within the memory T cell pool by 2 y postinfection. Using a dual adoptive transfer approach to address the recall potential of virus-specific TCEs, we also demonstrate that most TCEs examined are poorly responsive to a secondary infection. Therefore, we provide evidence that the development of TCE is a common occurrence due to the progressive dysregulation of the virus-specific memory T cell pool with age, but many TCEs are profoundly defective in their ability to mediate recall responses.
Project description:CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.
Project description:The cellular origin of CD4- CD8- (double negative, DNT) TCR-α/β+ T cells remains unknown. Available evidence indicates that they may derive from CD8+ T cells, but most published data have been obtained using cells that bear an invariant transgenic T cell receptor that recognizes an Ag that is not present in normal mice. Here, we have used complementary fate mapping and adoptive transfer experiments to identify the cellular lineage of origin of DNT cells in wild-type mice with a polyclonal T cell repertoire. We show that TCR-α/β+ DNT cells can be traced back to CD8+ and CD4+ CD8+ double positive cells in the thymus. We also demonstrate that polyclonal DNT cells generated in secondary lymphoid organs proliferate upon adoptive transfer and can regain CD8 expression in lymphopenic environment. These results demonstrate the cellular origin of DNT cells and provide a conceptual framework to understand their presence in pathological circumstances.
Project description:TCR signaling plays a central role in directing developmental fates of thymocytes. Current models suggest TCR signal duration directs CD4 versus CD8 lineage development. To investigate the role of TCR signaling during positive selection directly, we switched signaling off in a cohort of selecting thymocytes and followed, in time, their subsequent fate. We did this using an inducible Zap70 transgenic mouse model that allowed Zap70-dependent signaling to be turned on and then off again. Surprisingly, loss of TCR signaling in CD4(+)CD8(lo) thymocytes did not prevent their development into committed CD4 single positives (SPs), nor their continued maturation to HSA(lo) SPs. However, numbers of CD4 SPs underwent a substantial decline following loss of Zap70 expression, suggesting an essential survival role for the kinase. Termination of TCR signaling is considered an essential step in CD8 lineage development. Loss of Zap70 expression, however, resulted in the rapid death of CD8 lineage precursor thymocytes and a failure to generate CD8 SPs. Significantly, extending the window of Zap70 expression was sufficient for generation and export of both CD4 and CD8 T cells. These data reveal a parallel requirement for TCR-mediated survival signaling, but an asymmetric requirement for TCR-mediated maturation signals.
Project description:CD8 memory T cells are tightly regulated in young, healthy individuals but are often perturbed in aged animals by the appearance of large CD8 T cell clones. These clones are associated with impaired immunity in the aged. The molecular basis of this phenomenon remains unclear. Here, it is shown that the issue is confused by the fact that the clones are heterogeneous. Some clones bear high, and others, low levels of integrin alpha(4) (itgalpha4). These subtypes differ by multiple criteria. They appear in mice of different ages, concentrate in different tissues, and have different stabilities in vivo and responses to stimulation in vitro. itgalpha4(high), but not itgalpha4(low), CD8 clonal expansions have several characteristics consistent with a chronically stimulated phenotype. These properties include lowered levels of CD8, decreased expression of some cytokine receptors, and elevated expression of various inhibitory receptors, including the programmed death-1 (PD1) receptor and the killer cell lectin-like receptor G1 (KLRG1). The characteristics of itgalpha4(high) clonal expansions suggest that they may arise from age-dependent alterations in antigen expression and tolerance. These data redefine CD8 clonal expansions into at least two distinct entities and indicate that there are multiple mechanisms that drive age-related alterations of CD8 T cell homeostasis.
Project description:CD8+ T-cell expansions are the primary manifestation of T-cell large granular lymphocytic leukemia (T-LGLL), which is frequently accompanied by neutropenia and rheumatoid arthritis, and also occur as a secondary phenomenon in leukemia patients treated with dasatinib, notably in association with various drug-induced side-effects. However, the mechanisms that underlie the genesis and maintenance of expanded CD8+ T-cell receptor (TCR)-Vβ+ populations in these patient groups have yet to be fully defined. In this study, we performed a comprehensive phenotypic and clonotypic assessment of expanded (TCR-Vβ+) and residual (TCR-Vβ-) CD8+ T-cell populations in T-LGLL and dasatinib-treated chronic myelogenous leukemia (CML) patients. The dominant CD8+ TCR-Vβ+ expansions in T-LGLL patients were largely monoclonal and highly differentiated, whereas the dominant CD8+ TCR-Vβ+ expansions in dasatinib-treated CML patients were oligoclonal or polyclonal, and displayed a broad range of memory phenotypes. These contrasting features suggest divergent roles for antigenic drive in the immunopathogenesis of primary versus dasatinib-associated CD8+ TCR-Vβ+ expansions.
Project description:Many aged individuals develop monoclonal expansions of CD8 T cells. These expansions are derived from a CD8 memory T cell that outcompetes neighboring CD8 T cells. The molecular alterations within clonal expansions that confer this competitive advantage relative to other CD8 T cells remains unknown. These microarray experiments were designed to identify genes differentially expressed in age-associated expansions of CD8 memory T cells relative to polyclonal CD8 memory T cells found in the same aged mice. Subsequent analysis of these data identified two major types of clonal expansions, distinguished by expression level of integrin a4 mRNA and protein. Based on this classification, Expansion_rep1 belongs to the integrin a4 high subtype of clonal expansions. In contrast, reps 2, 4, and 5 belong to the integrin a4 low subtype of clonal expansions. Given the divergent biological properties of these two subtypes of clonal expansions, we have focused genes differentially expressed between Expansion_rep 2, 4, and 5 and their paired PolyclonalAged samples. Experiment Overall Design: A total of 8 samples were analyzed for gene expression using the Affymetrix mouse genome 430 2.0 microarray platform. The experimental samples of interest were age-associated clonal expansions of CD8 memory T cells. We purified four clonal expansions from four independent, aged mice (indicated as "Expansion" rep1 2, 3, 4). For each clonal expansion of CD8 memory T cells that was purified, there was a paired control in which polyclonal CD8 memory T cells were harvested from the same aged mouse (denoted as "PolyclonalAged" rep1, 2, 3, 4). These paired samples allow one to consider gene expression changes from mice which have undergone the same age-associated changes in biology. The predominant comparison this study focused on was changes in gene expression between age-associated clonal expansions of CD8 memory T cells and their paired, polyclonal CD8 memory T cells. A total of 4 of these pairs were collected.
Project description:Defects in T cell responses against pathogens and reduced diversity of TCRs have been described at both extremes of the life span. Yet, we still lack information on how Ag-specific T cell populations are maintained and/or altered from birth to old age. In this study, for the first time to our knowledge, we provide insight into Ag-specific TCR repertoire changes over the life span at the single-cell level. We have examined the TCR diversity of the primary CD8(+) T cell response to the immunodominant HSV-1 epitope HSV glycoprotein B 495-502 (HSV gB(498-505); SSIEFARL) (gB-8p) in neonatal, adult, and old C57BL/6 mice. The global distinctive features of the gB-8p-specific TCR repertoire were preserved in mice of different ages. However, both old and especially neonatal mice exhibited significant decreases in TCR diversity compared with that of adult mice. Still, although the neonatal Ag-specific repertoire comprised expectedly shorter germline-biased CDR3β lengths, the repertoire was surprisingly complex, and only a minority of responding cells lacked random nucleotide additions. Changes with aging included increased use of the already dominant TCRVβ10 family, a trend for lower content of the TCR containing the germline WG motif in the CDR3, and a remarkable sharing of one dominant clonotype between individual old mice, implying operation of selective mechanisms. Implications for the rational design of vaccines for neonates and the elderly are discussed.
Project description:We surveyed the T cell receptor repertoire in three separate compartments (brain, cerebrospinal fluid, and blood) of two multiple sclerosis patients who initially had diagnostic brain biopsies to clarify their unusual clinical presentation but were subsequently confirmed to have typical multiple sclerosis. One of the brain biopsy specimens had been previously investigated by microdissection and single-cell PCR to determine the clonal composition of brain-infiltrating T cells at the single-cell level. Using complementarity-determining region 3 spectratyping, we identified several identical, expanded CD8+ (but not CD4+) T cell clones in all three compartments. Some of the expanded CD8+ T cells also occurred in sorted CD38+ blood cells, suggesting that they were activated. Strikingly, some of the brain-infiltrating CD8+ T cell clones persisted for >5 years in the cerebrospinal fluid and/or blood and may thus contribute to the progression of the disease.