Unknown

Dataset Information

0

Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity.


ABSTRACT: The emergence of multidrug-resistant Klebsiella pneumoniae highlights the need to develop preventive measures to ameliorate Klebsiella infections. Bacteria-derived extracellular vesicles (EVs) are spherical nanometer-sized proteolipids enriched with outer membrane proteins. Gram-negative bacteria-derived EVs have gained interest for use as nonliving complex vaccines. In the present study, we evaluated whether K. pneumoniae-derived EVs confer protection against bacteria-induced lethality. K. pneumoniae-derived EVs isolated from in vitro bacterial culture supernatants induced innate immunity, including the upregulation of co-stimulatory molecule expression and proinflammatory mediator production. EV vaccination via the intraperitoneal route elicited EV-reactive antibodies and interferon-gamma-producing T-cell responses. Three vaccinations with the EVs prevented bacteria-induced lethality. As verified by sera and splenocytes adoptive transfer, the protective effect of EV vaccination was dependent on both humoral and cellular immunity. Taken together, these findings suggest that K. pneumoniae-derived EVs are a novel vaccine candidate against K. pneumoniae infections.

SUBMITTER: Lee WH 

PROVIDER: S-EPMC4650931 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity.

Lee Won-Hee WH   Choi Hyun-Il HI   Hong Sung-Wook SW   Kim Kwang-Sun KS   Gho Yong Song YS   Jeon Seong Gyu SG  

Experimental & molecular medicine 20150911


The emergence of multidrug-resistant Klebsiella pneumoniae highlights the need to develop preventive measures to ameliorate Klebsiella infections. Bacteria-derived extracellular vesicles (EVs) are spherical nanometer-sized proteolipids enriched with outer membrane proteins. Gram-negative bacteria-derived EVs have gained interest for use as nonliving complex vaccines. In the present study, we evaluated whether K. pneumoniae-derived EVs confer protection against bacteria-induced lethality. K. pneu  ...[more]

Similar Datasets

2022-09-30 | GSE184584 | GEO
2023-07-31 | GSE209720 | GEO
| S-EPMC5808851 | biostudies-literature
| S-EPMC355988 | biostudies-literature
2025-04-01 | GSE230304 | GEO
| S-EPMC6413513 | biostudies-literature
| S-EPMC11726972 | biostudies-literature
| S-EPMC9199425 | biostudies-literature
| S-EPMC6697788 | biostudies-literature
| S-EPMC10792913 | biostudies-literature