Unknown

Dataset Information

0

Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate.


ABSTRACT: Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.

SUBMITTER: De Filippis F 

PROVIDER: S-EPMC4766472 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate.

De Filippis Francesca F   Genovese Alessandro A   Ferranti Pasquale P   Gilbert Jack A JA   Ercolini Danilo D  

Scientific reports 20160225


Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure  ...[more]

Similar Datasets

| S-EPMC3834852 | biostudies-other
| S-EPMC6587244 | biostudies-literature
2016-08-01 | E-GEOD-76590 | biostudies-arrayexpress
2016-08-01 | GSE76590 | GEO
| S-EPMC3977359 | biostudies-literature
| S-EPMC7464454 | biostudies-literature
2019-03-09 | GSE108572 | GEO