Project description:Excessive expression of subunit 1 of GIRK1 in ER+ breast tumors is associated with reduced survival times and increased lymph node metastasis in patients. To investigate possible tumor-initiating properties, benign MCF10A and malign MCF7 mammary epithelial cells were engineered to overexpress GIRK1 neoplasia associated vital parameters and resting potentials were measured and compared to controls. The presence of GIRK1 resulted in resting potentials negative to the controls. Upon GIRK1 overexpression, several cellular pathways were regulated towards pro-tumorigenic action as revealed by comparison of transcriptomes of MCF10AGIRK1 with the control (MCF10AeGFP). According to transcriptome analysis, cellular migration was promoted while wound healing and extracellular matrix interactions were impaired. Vital parameters in MCF7 cells were affected akin the benign MCF10A lines, but to a lesser extent. Thus, GIRK1 regulated cellular pathways in mammary epithelial cells are likely to contribute to the development and progression of breast cancer.
Project description:Autophagy has been proposed to promote cell death during lumen formation in three-dimensional mammary epithelial acini because numerous autophagic vacuoles are observed in the dying central cells during morphogenesis. Because these central cells die due to extracellular matrix (ECM) deprivation (anoikis), we have directly interrogated how matrix detachment regulates autophagy. Detachment induces autophagy in both nontumorigenic epithelial lines and in primary epithelial cells. RNA interference-mediated depletion of autophagy regulators (ATGs) inhibits detachment-induced autophagy, enhances apoptosis, and reduces clonogenic recovery after anoikis. Remarkably, matrix-detached cells still exhibit autophagy when apoptosis is blocked by Bcl-2 overexpression, and ATG depletion reduces the clonogenic survival of Bcl-2-expressing cells after detachment. Finally, stable reduction of ATG5 or ATG7 in MCF-10A acini enhances luminal apoptosis during morphogenesis and fails to elicit long-term luminal filling, even when combined with apoptotic inhibition mediated by Bcl-2 overexpression. Thus, autophagy promotes epithelial cell survival during anoikis, including detached cells harboring antiapoptotic lesions.
Project description:Evasion of extracellular matrix detachment-induced apoptosis ('anoikis') is a defining characteristic of metastatic tumor cells. The ability of metastatic carcinoma cells to survive matrix detachment and escape anoikis enables them to disseminate as viable circulating tumor cells and seed distant organs. Here we report that αB-crystallin, an antiapoptotic molecular chaperone implicated in the pathogenesis of diverse poor-prognosis solid tumors, is induced by matrix detachment and confers anoikis resistance. Specifically, we demonstrate that matrix detachment downregulates extracellular signal-regulated kinase (ERK) activity and increases αB-crystallin protein and messenger RNA (mRNA) levels. Moreover, we show that ERK inhibition in adherent cancer cells mimics matrix detachment by increasing αB-crystallin protein and mRNA levels, whereas constitutive ERK activation suppresses αB-crystallin induction during matrix detachment. These findings indicate that ERK inhibition is both necessary and sufficient for αB-crystallin induction by matrix detachment. To examine the functional consequences of αB-crystallin induction in anoikis, we stably silenced αB-crystallin in two different metastatic carcinoma cell lines. Strikingly, silencing αB-crystallin increased matrix detachment-induced caspase activation and apoptosis but did not affect cell viability of adherent cancer cells. In addition, silencing αB-crystallin in metastatic carcinoma cells reduced the number of viable circulating tumor cells and inhibited lung metastasis in two orthotopic models, but had little or no effect on primary tumor growth. Taken together, our findings point to αB-crystallin as a novel regulator of anoikis resistance that is induced by matrix detachment-mediated suppression of ERK signaling and promotes lung metastasis. Our results also suggest that αB-crystallin represents a promising molecular target for antimetastatic therapies.
Project description:Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Project description:In the initiation and evolution of human cancers, circular RNAs (circRNAs) act as crucial regulators. The aim of this report was to ascertain the functional mechanisms of circRNA plasmacytoma variant translocation 1 (circPVT1) in the metastasis and chemoresistance of non-small cell lung cancer (NSCLC). The levels of circPVT1, microRNA-181a-5p (miR-181a-5p) and non-inherited maternal antigens-related kinase 7 (NEK7) were examined via quantitative real-time polymerase chain reaction (qRT-PCR). The levels of the associated proteins were determined through western blot. Cell counting kit-8 (CCK-8) and flow cytometry were used to assess the half inhibitory concentration (IC50) of cisplatin and cell apoptosis, respectively. Cell invasion was detected by transwell assay. A dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were used to confirm the target relation. The impact of circPVT1 on cisplatin chemoresistance in vivo was investigated using xenograft experiments. CircPVT1 and NEK7 were up-regulated and miR-181a-5p was down-regulated in NSCLC. CircPVT1 knockdown refrained the cisplatin chemoresistance and metastasis of NSCLC cells. MiR-181a-5p was a target of circPVT1 and circPVT1 inhibition alleviated the effects of a miR-181a-5p inhibitor on NSCLC cells. The decrease of circPVT1 accentuated the si-NEK7-inhibited metastasis by the miR-181a-5p/NEK7 axis and relieved the 3-methyladenine (3-MA)-promoted cisplatin chemoresistance by miR-181a-5p-mediated autophagy. Down-regulation of circPVT1 facilitated the cisplatin sensitivity of NSCLC cells in vivo. Due to the modulation of cell metastasis via the miR-181a-5p/NEK7 axis and cisplatin chemoresistance by miR-181a-5p-mediated autophagy in NSCLC, circPVT1 might act as an appreciable therapeutic marker for NSCLC.
Project description:MicroRNAs have emerged as important post-transcriptional regulators of gene expression and are involved in diverse diseases and cellular process. Decreased expression of miR-181a has been observed in the patients with coronary artery disease, but its function and mechanism in atherogenesis is not clear. This study was designed to determine the roles of miR-181a-5p, as well as its passenger strand, miR-181a-3p, in vascular inflammation and atherogenesis. We found that the levels of both miR-181a-5p and miR-181a-3p are decreased in the aorta plaque and plasma of apoE-/- mice in response to hyperlipidemia and in the plasma of patients with coronary artery disease. Rescue of miR-181a-5p and miR-181a-3p significantly retards atherosclerotic plaque formation in apoE-/- mice. MiR-181a-5p and miR-181a-3p have no effect on lipid metabolism but decrease proinflammatory gene expression and the infiltration of macrophage, leukocyte and T cell into the lesions. In addition, gain-of-function and loss-of-function experiments show that miR-181a-5p and miR-181a-3p inhibit adhesion molecule expression in HUVECs and monocytes-endothelial cell interaction. MiR-181a-5p and miR-181a-3p cooperatively receded endothelium inflammation compared with single miRNA strand. Mechanistically, miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of NF-κB signaling pathway by targeting TAB2 and NEMO, respectively. In conclusion, these findings suggest that miR-181a-5p and miR-181a-3p are both antiatherogenic miRNAs. MiR-181a-5p and miR-181a-3p mimetics retard atherosclerosis progression through blocking NF-κB activation and vascular inflammation by targeting TAB2 and NEMO, respectively. Therefore, restoration of miR-181a-5p and miR-181a-3p may represent a novel therapeutic approach to manage atherosclerosis.
Project description:Epidermis, a continuously self-renewing and differentiating organ, produces a protective stratum corneum that shields us from external chemical, physical and microbial threats. Epidermal differentiation is a multi-step process regulated by influences, some unknown, others insufficiently explored. Detachment of keratinocytes from the basement membrane is one such pro-differentiation stimulus. Here, we define the transcriptional changes during differentiation, especially those caused by detachment from the substratum. Using comprehensive transcriptional profiling, we revisited the effects of detachment as a differentiation signal to keratinocytes. We identified the genes regulated by detachment, the corresponding ontological categories and, using metaanalysis, compared the genes and categories to those regulated by other pro-differentiating stimuli. We identified 762 genes overexpressed in suspended keratinocyte, including known and novel differentiation markers, and 1427 in attached cells, including basal layer markers. Detachment induced epidermis development, cornification and desmosomal genes, but also innate immunity, proliferation inhibitors, transcription regulators and MAPKs; conversely the attached cells overexpressed cell cycle, anchoring, motility, splicing and mitochondrial genes, and both positive and negative regulators of apoptosis. Metaanalysis identified which detachment-regulated categories overlap with those induced by suprabasal location in vivo, by reaching confluency in vitro, and by inhibition of JUN kinases. Attached and in vivo basal cells shared overexpression of mitochondrial components. Interestingly, melanosome trafficking components were also overexpressed in the attached and in vivo basal keratinocytes. These results suggest that specific pro-differentiation signals induce specific features of the keratinization process, which are in vivo orchestrated into harmonious epidermal homeostasis.
Project description:Anoikis, apoptosis because of loss of cell anchorage, is crucial for tissue homeostasis. Fibronectin not only provides a scaffold for cell anchorage but also harbors a cryptic antiadhesive site capable of inducing β1-integrin inactivation. In this study, this cryptic antiadhesive site is implicated in spontaneous induction of anoikis. Nontransformed fibroblasts (NIH3T3) adhering to a fibronectin substratum underwent anoikis during serum starvation culture. This anoikis was caused by proteolytic exposure of the cryptic antiadhesive site in fibronectin by matrix metalloproteinase. Eukaryotic elongation factor 1A (eEF1A) was identified as a membrane receptor for the exposed antiadhesive site. Serum starvation raised the membrane residence of eEF1A, and siRNA-based disruption of this increase rendered cells anoikis-resistant. By contrast, cells became more susceptible to anoikis in parallel with increased membrane residence of eEF1A by enforced expression. These results demonstrate that eEF1A acts as a membrane receptor for the cryptic antiadhesive site of fibronectin, which contributes to cell regulation, including anoikis, through negative regulation of cell anchorage.
Project description:High-throughput microRNA (miRNA) sequencing of osteoporosis was analyzed from the Gene Expression Omnibus (GEO) database to investigate specific microRNAs that control osteogenesis. MiR-181a-5p was differentially expressed among healthy subjects and those with osteoporosis. Inhibitors and mimics were transfected into cells to modulate miR-181a-5p levels to examine the role in MC3T3-E1 functions. Alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining were used for morphological detection, and proteins of ALP and Runt-related transcription factor 2 (RUNX2), as osteogenesis markers, were detected. During the osteogenic differentiation of MC3T3-E1, the transcription level of miR-181a-5p was significantly increased. The inhibition of miR-181a-5p suppressed MC3T3-E1 osteogenic differentiation, whereas its overexpression functioned oppositely. Consistently, the miR-181a-5p antagomir aggravated osteoporosis in old mice. Additionally, we predicted potential target genes via TargetScan and miRDB and identified bone morphogenetic protein 3 (BMP3) as the target gene. Moreover, the reduced expression of miR-181a-5p was validated in our hospitalized osteoporotic patients. These findings have substantial implications for the strategies targeting miR-181a-5p to prevent osteoporosis and potential related fractures.