Project description:A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design.Supplementary informationThe online version contains supplementary material available at 10.1007/s42995-023-00215-9.
Project description:Viruses have always been a class of pathogenic microorganisms that threaten the health and safety of human life worldwide. However, for a long time, the treatment of viral infections has been slow to develop, and only a few antiviral drugs have been using clinically. Compared with these from terrestrial environments, marine-derived microorganisms can produce active substances with more novel structures and unique functions. From 2015 to 2019, 89 antiviral compounds of 8 structural classes have been isolated from marine microorganisms, of which 35 exhibit anti-H1N1 activity. This review surveys systematically marine microbial-derived natural products with antiviral activity and illustrates the impact of these compounds on antiviral drug discovery research.
Project description:The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules.
Project description:Alzheimer's disease (AD) is a multifactorial disease characterized by the presence of amyloid plaques, neurofibrillary tangles, and nerve cell death that affects, mainly, older people. After decades of investigation, the search for an efficacious treatment for AD remains and several strategies can be and are being employed in this journey. In this review, four of the most promising strategies, alongside with its most promising agents under investigation or development are highlighted. Marine natural products (MNP) are a source of unique chemical structures with useful biological activities for AD treatment. One of the most promising compounds, a marine-derived acidic oligosaccharide (GV-971) just passed phase III clinical trials with a unique mechanism of action. Combination therapy and multitargeted-directed ligand therapy (MTDL) are also two important strategies, with several examples in clinical trials, based on the belief that the best approach for AD is a therapy capable of modulating multiple target pathways. Drug repurposing, a strategy that requires a smaller investment and is less time consuming, is emerging as a strong contender with a variety of pharmacological agents resurfacing in an attempt to identify a therapeutic candidate capable of modifying the course of this disease.
Project description:A new pyrazine derivative, trypilepyrazinol (1), a new α-pyrone polyketide, (+)-neocitreoviridin (2), and a new ergostane analogue, 3β-hydroxyergosta-8,14,24(28)-trien-7-one (3), were isolated and characterized along with five known compounds from the marine-derived fungus Penicillium sp. IMB17-046. The structures of these new compounds were determined using spectroscopic data analyses (HRESIMS, 1D- and 2D-NMR), X-ray crystallography analysis, and TDDFT ECD calculation. Compounds 1 and 3 exhibited broad-spectrum antiviral activities against different types of viruses, including human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza A virus (IAV), with IC50 values ranging from 0.5 to 7.7 μM. Compounds 1 and 2 showed antibacterial activities against Helicobacter pylori, a causative pathogen of various gastric diseases, with minimum inhibitory concentration (MIC) values of 1-16 μg/mL.
Project description:Marine natural products are a diverse, unique collection of compounds with immense therapeutic potential. This has resulted in these molecules being evaluated for a number of different disease indications including the neglected protozoan diseases, human African trypanosomiasis and Chagas disease, for which very few drugs are currently available. This article will review the marine natural products for which activity against the kinetoplastid parasites; Trypanosoma brucei brucei, T.b. rhodesiense and T. cruzi has been reported. As it is important to know the selectivity of a compound when evaluating its trypanocidal activity, this article will only cover molecules which have simultaneously been tested for cytotoxicity against a mammalian cell line. Compounds have been grouped according to their chemical structure and representative examples from each class were selected for detailed discussion.
Project description:A growing body of evidence indicates that glycosylated natural products have become vital platforms for the development of many existing first-line drugs. This review covers 205 new glycosides over the last 22 years (1997-2018), from marine microbes, including bacteria, cyanobacteria, and fungi. Herein, we discuss the structures and biological activities of these compounds, as well as the details of their source organisms.
Project description:Marine natural products are potent and promising sources of drugs among other natural products of plant, animal, and microbial origin. To date, 20 drugs from marine sources are in clinical use. Most approved marine compounds are antineoplastic, but some are also used for chronic neuropathic pain, for heparin overdosage, as haptens and vaccine carriers, and for omega-3 fatty-acid supplementation in the diet. Marine drugs have diverse structural characteristics and mechanisms of action. A considerable increase in the number of marine drugs approved for clinical use has occurred in the past few decades, which may be attributed to increasing research on marine compounds in laboratories across the world. In the present manuscript, we comprehensively studied all marine drugs that have been successfully used in the clinic. Researchers and clinicians are hopeful to discover many more drugs, as a large number of marine natural compounds are being investigated in preclinical and clinical studies.
Project description:Natural products are primal and have been a driver in the evolution of organic chemistry and ultimately in science. The chemical structures obtained from marine organisms are diverse, reflecting biodiversity of genes, species and ecosystems. Biodiversity is an extraordinary feature of life and provides benefits to humanity while promoting the importance of environment conservation. This review covers the literature on marine natural products (MNPs) discovered in Indonesian waters published from January 1970 to December 2017, and includes 732 original MNPs, 4 structures isolated for the first time but known to be synthetic entities, 34 structural revisions, 9 artifacts, and 4 proposed MNPs. Indonesian MNPs were found in 270 papers from 94 species, 106 genera, 64 families, 32 orders, 14 classes, 10 phyla, and 5 kingdoms. The emphasis is placed on the structures of organic molecules (original and revised), relevant biological activities, structure elucidation, chemical ecology aspects, biosynthesis, and bioorganic studies. Through the synthesis of past and future data, huge and partly undescribed biodiversity of marine tropical invertebrates and their importance for crucial societal benefits should greatly be appreciated.
Project description:ContextSince the outbreak of SARS-CoV-2, researchers have been working on finding ways to prevent viral entry and pathogenesis. Drug development from naturally-sourced pharmacological constituents may be a fruitful approach to COVID-19 therapy.ObjectiveMost of the published literature has focussed on medicinal plants, while less attention has been given to biodiverse sources such as animal, marine, and microbial products. This review focuses on highlighting natural products and their derivatives that have been evaluated for antiviral, anti-inflammatory, and immunomodulatory properties.MethodsWe searched electronic databases such as PubMed, Scopus, Science Direct and Springer Link to gather raw data from publications up to March 2021, using terms such as 'natural products', marine, micro-organism, and animal, COVID-19. We extracted a number of documented clinical trials of products that were tested in silico, in vitro, and in vivo which paid specific attention to chemical profiles and mechanisms of action.ResultsVarious classes of flavonoids, 2 polyphenols, peptides and tannins were found, which exhibit inhibitory properties against viral and host proteins, including 3CLpro, PLpro, S, hACE2, and NF-κB, many of which are in different phases of clinical trials.Discussion and conclusionsThe synergistic effects of logical combinations with different mechanisms of action emphasizes their value in COVID19 management, such as iota carrageenan nasal spray, ermectin oral drops, omega-3 supplementation, and a quadruple treatment of zinc, quercetin, bromelain, and vitamin C. Though in vivo efficacy of these compounds has yet to be established, these bioproducts are potentially useful in counteracting the effects of SARS-CoV-2.