Project description:Osteopontin (OPN) was first identified in 1986. The prefix osteo- means bone; however, OPN is expressed in other tissues, including liver. The suffix -pontin means bridge and denotes the role of OPN as a link protein within the extracellular matrix. While OPN has well-established physiological roles, multiple "omics" analyses suggest that it is also involved in chronic liver disease. In this review, we provide a summary of the OPN gene and protein structure and regulation. We outline the current knowledge on how OPN is involved in hepatic steatosis in the context of alcoholic liver disease and non-alcoholic fatty liver disease. We describe the mechanisms whereby OPN participates in inflammation and liver fibrosis and discuss current research on its role in hepatocellular carcinoma and cholangiopathies. To conclude, we highlight important points to consider when doing research on OPN and provide direction for making progress on how OPN contributes to chronic liver disease.
Project description:Recent studies have defined a group of muscular dystrophies, now termed the dystroglycanopathies, as novel disorders of glycosylation. These conditions include Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama-type congenital muscular dystrophy, congenital muscular dystrophy types 1C and 1D, and limb-girdle muscular dystrophy type 2I. Although clinical findings can be highly variable, dystroglycanopathies are all characterized by cortical malformations and ocular defects at the more severe end of the clinical spectrum, in addition to muscular dystrophy. All of these disorders are defined by the underglycosylation of alpha-dystroglycan. Defective glycosylation of dystroglycan severs the link between this important cell adhesion molecule and the extracellular matrix, thereby contributing to cellular pathology. Recent experiments indicate that glycosylation might not only define forms of muscular dystrophy but also provide an avenue to the development of therapies for these disorders.
Project description:Lysophosphatidic acid (LPA) is a serum phospholipid that evokes growth factor-like responses in many cell types through the activation of its G protein-coupled receptors. Although much is known about LPA signaling, it has remained unclear where and how bioactive LPA is produced. Umezu-Goto et al. (2002)(this issue, page 227) have purified a serum lysophospholipase D that generates LPA from lysophosphatidylcholine and found it to be identical to autotaxin, a cell motility-stimulating ectophosphodiesterase implicated in tumor progression. This result is surprising, as there was previously no indication that autotaxin could act as a phospholipase.
Project description:Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Project description:Overlooked for decades, antibodies have taken center stage in renal transplantation and are now widely recognized as the first cause of allograft failure. Diagnosis of antibody-mediated rejection has considerably improved with identification of antibody-mediated lesions in graft biopsies and advances made in the detection of circulating donor-specific antibodies. Unfortunately, this progress has not yet translated into better outcomes for patients. Indeed, in the absence of a drug able to suppress antibody generation by plasma cells, available therapies can only slow down graft destruction. This review provides an overview of the current knowledge of antibody-mediated rejection and discusses future interesting research directions.
Project description:BackgroundChronic lung diseases are marked by progressive inflammation, tissue damage and remodelling. Bone marrow-derived progenitor cells may contribute to these processes. The objectives of this study were to (1) to quantify CD45⁺Collagen-1⁺ fibrocytes and a novel epithelial-like population of bone marrow-derived cells, which express Clara Cell Secretory Protein, in patients at the time of lung transplant and (2) to evaluate mediators that may act to recruit these cells during injury.MethodsUsing an observational design, progenitor cells were quantified by flow cytometry from both bone marrow (BM) and peripheral blood (PB). Migration was tested using in vitro transwell assays. Multiplex bead-based assays were used to quantify plasma cytokines.ResultsAn increase in CD45⁺Collagen-1⁺ fibrocytes was found in pulmonary fibrosis and bronchiolitis obliterans patients. Cystic fibrosis patients had an increase in CCSP⁺ cells in both the BM and PB. The proportion of CCSP⁺ cells in the BM and PB was correlated. CCSP+ cells express the chemokine receptors CCR2, CCR4, CXCR3, and CXCR4, and significantly migrated in vitro toward Stromal Derived Factor-1 (SDF-1) and Stem Cell Growth Factor-β (SCGF-β). Plasma cytokine levels differed between disease groups, with a significant correlation between SCGF-β and CCSP⁺ cells and between Monocyte Chemotactic Protein-1 and fibrocytes.ConclusionsDifferent bone marrow-derived cells are found in various lung diseases. Increased fibrocytes were associated with fibrotic lung diseases. An increase in the novel CCSP⁺ epithelial-like progenitors in cystic fibrosis patients was found. These differences may be mediated by alterations in plasma cytokines responsible for cell recruitment.
Project description:Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.