Project description:Personality traits have been suggested as potential endophenotypes for Bipolar Disorder (BP), as they can be quantitatively measured and show correlations with BP. The present study utilized data from 2,745 individuals from 686 extended pedigrees originally ascertained for having multiplex cases of BP (963 cases of BPI or schizoaffective BP). Subjects were assessed with the NEO Personality Inventory, Revised (NEO PI-R) and genotyped using the Illumina HumanLinkage-24 Bead Chip, with an average genetic coverage of 0.67 cM. Two point linkage scores were calculated for each trait as a quantitative variable using SOLAR (Sequential Oligogenic Linkage Analysis Routines). Suggestive evidence for linkage was found for neuroticism at 1q32.1 (LOD = 2.52), 6q23.3 (2.32), 16p12 (2.79), extraversion at 4p15.3 (2.33), agreeableness at 4q31.1 (2.37), 5q34 (2.80), 7q31.1 (2.56), 16q22 (2.52), and conscientiousness at 4q31.1 (2.50). Each of the above traits have been shown to be correlated with the broad BP phenotype in this same sample. In addition, for the trait of openness, we found significant evidence of linkage to chromosome 3p24.3 (rs336610, LOD = 4.75) and suggestive evidence at 1q43 (2.74), 5q35.1 (3.03), 11q14.3 (2.61), 11q21 (2.30), and 19q13.1 (2.52). These findings support previous linkage findings of the openness trait to chromosome 19q13 and the agreeableness trait to 4q31 and identify a number of new loci for personality endophenotypes related to bipolar disorder.
Project description:A genome scan of approximately 12-cM initial resolution was done on 50 of a set of 51 carefully ascertained unilineal multiplex families segregating the bipolar affective disorder phenotype. In addition to standard multipoint linkage analysis methods, a simultaneous-search algorithm was applied in an attempt to surmount the problem of genetic heterogeneity. The results revealed no linkage across the genome. The results exclude monogenic models and make it unlikely that two genes account for the disease in this sample. These results support the conclusion that at least several hundred kindreds will be required in order to establish linkage of susceptibility loci to bipolar disorder in heterogeneous populations.
Project description:The relatively short history of linkage studies in bipolar disorders (BPs) has produced inconsistent findings. Implicated regions have been large, with reduced levels of significance and modest effect sizes. Both phenotypic and genetic heterogeneity may have contributed to the failure to define risk loci. BP is part of a spectrum of apparently familial affective disorders, which have been organized by severity. Heterogeneity may arise because of insufficient data to define the spectrum boundaries, and, in general, the less-severe disorders are more difficult to diagnose reliably. To address the inherent complexities in detecting BP susceptibility loci, we have used restricted diagnostic classifications and a genetically more homogeneous (Ashkenazi Jewish) family collection to perform a 9-cM autosomal genomewide linkage scan. Although they are genetically more homogeneous, there are no data to suggest that the rate of illness in the Ashkenazim differs from that in other populations. In a genome scan of 41 Ashkenazi pedigrees with a proband affected with bipolar I disorder (BPI) and at least one other member affected with BPI or bipolar II disorder (BPII), we identified four regions suggestive of linkage on chromosomes 1, 3, 11, and 18. Follow-up genotyping showed that the regions on chromosomes 1, 3, and 18 are also suggestive of linkage in a subset of pedigrees limited to relative pairs affected with BPI. Furthermore, our chromosome 18q22 signal (D18S541 and D18S477) overlaps with previous BP findings. This research is being conducted in parallel with our companion study of schizophrenia, in which, by use of an identical approach, we recently reported significant evidence for a schizophrenia susceptibility locus in the Ashkenazim on chromosome 10q22.
Project description:UnlabelledThe development of refractive error is mediated by both environmental and genetic factors. We performed regression-based quantitative trait locus (QTL) linkage analysis on Ashkenazi Jewish families to identify regions in the genome responsible for ocular refraction. We measured refractive error on individuals in 49 multi-generational American families of Ashkenazi Jewish descent. The average family size was 11.1 individuals and was composed of 2.7 generations. Recruitment criteria specified that each family contain at least two myopic members. The mean spherical equivalent refractive error in the sample was -3.46D (SD=3.29) and 87% of individuals were myopic. Microsatellite genotyping with 387 markers was performed on 411 individuals. We performed multipoint regression-based linkage analysis for ocular refraction and a log transformation of the trait using the statistical package Merlin-Regress. Empirical genomewide significance levels were estimated through gene-dropping simulations by generating random genotypes at each of the 387 markers in 200 replicates of our pedigrees. Maximum LOD scores of 9.5 for ocular refraction and 8.7 for log-transformed refraction (LTR) were observed at 49.1 cM on chromosome 1p36 between markers D1S552 and D1S1622. The empirical genomewide significance levels were P=0.065 for ocular refraction and P<0.005 for LTR, providing strong evidence for linkage of refraction to this locus. The inter-marker region containing the peak spans 11 Mb and contains approximately 189 genes.ConclusionWe found genomewide significant evidence for linkage of refractive error to a novel QTL on chromosome 1p36 in an Ashkenazi Jewish population.
Project description:BackgroundThe many attempts that have been made to identify genes for bipolar disorder (BD) have met with limited success, which may reflect an inadequacy of diagnosis as an informative and biologically relevant phenotype for genetic studies. Here we have explored aspects of personality as quantitative phenotypes for bipolar disorder through the use of the Temperament and Character Inventory (TCI), which assesses personality in seven dimensions. Four temperament dimensions are assessed: novelty seeking (NS), harm avoidance (HA), reward dependence (RD), and persistence (PS). Three character dimensions are also included: self-directedness (SD), cooperativeness (CO), and self-transcendence (ST).MethodsWe compared personality scores between diagnostic groups and assessed heritability in a sample of 101 families collected for genetic studies of BD. A genome-wide SNP linkage analysis was then performed in the subset of 51 families for which genetic data was available.ResultsSignificant group differences were observed between BD subjects, their first-degree relatives, and independent controls for all but RD and PS, and all but HA and RD were found to be significantly heritable in this sample. Linkage analysis of the heritable dimensions produced several suggestive linkage peaks for NS (chromosomes 7q21 and 10p15), PS (chromosomes 6q16, 12p13, and 19p13), and SD (chromosomes 4q35, 8q24, and 18q12).LimitationsThe relatively small size of our linkage sample likely limited our ability to reach genome-wide significance in this study.ConclusionsWhile not genome-wide significant, these results suggest that aspects of personality may prove useful in the identification of genes underlying BD susceptibility.
Project description:Plasma HDL cholesterol levels (HDL-C) are an independent predictor of coronary artery disease (CAD). We have completed a genome-wide linkage scan for HDL-C in a US cohort consisting of 388 multiplex families with premature CAD (GeneQuest). The heritability of HDL-C in GeneQuest was 0.37 with gender and age as covariates (P = 5.1 x 10(-4)). Two major quantitative trait loci (QTL) for log-transformed HDL-C adjusted for age and gender were identified onto chromosomes 7p22 and 15q25 with maximum multipoint logarithm of odds (LOD) scores of 3.76 and 6.69, respectively. Fine mapping decreased the 7p22 LOD score to a nonsignificant level of 3.09 and split the 15q25 QTL into two loci, one minor QTL on 15q22 (LOD = 2.73) that spanned the LIPC gene, and the other at 15q25 (LOD = 5.63). A family-based quantitative transmission disequilibrium test (QTDT) revealed significant association between variant rs1800588 in LIPC and HDL-C in the GeneQuest population (P = 0.0067), which may account for the minor QTL on 15q22. The 15q25 QTL is the most significant locus identified for HDL-C to date, and these results provide a framework for the ultimate identification of the underlying HDL-C variant and gene on chromosomes 15q25, which will provide insights into novel regulatory mechanisms of HDL-C metabolism.
Project description:Preliminary studies suggested that age at onset (AAO) may help to define homogeneous bipolar affective disorder (BPAD) subtypes. This candidate symptom approach might be useful to identify vulnerability genes. Thus, the probability of detecting major disease-causing genes might be increased by focusing on families with early-onset BPAD type I probands. This study was conducted as part of the European Collaborative Study of Early Onset BPAD (France, Germany, Ireland, Scotland, Switzerland, England, Slovenia). We performed a genome-wide search with 384 microsatellite markers using non-parametric linkage analysis in 87 sib-pairs ascertained through an early-onset BPAD type I proband (AAO of 21 years or below). Non-parametric multipoint analysis suggested eight regions of linkage with P-values<0.01 (2p21, 2q14.3, 3p14, 5q33, 7q36, 10q23, 16q23 and 20p12). The 3p14 region showed the most significant linkage (genome-wide P-value estimated over 10 000 simulated replicates of 0.015 [0.01-0.02]). After genome-wide search analysis, we performed additional linkage analyses with increased marker density using markers in four regions suggestive for linkage and having an information contents lower than 75% (3p14, 10q23, 16q23 and 20p12). For these regions, the information content improved by about 10%. In chromosome 3, the non-parametric linkage score increased from 3.51 to 3.83. This study is the first to use early-onset bipolar type I probands in an attempt to increase sample homogeneity. These preliminary findings require confirmation in independent panels of families.
Project description:Categorical syndromes such as schizophrenia may represent complexes of many continuous psychological structural phenotypes along several dimensions of personality development/degeneration. The present study investigated the heritability and familiality of Neuroticism-Extraversion-Openness to experience (NEO) personality dimensions in Korean families with schizophrenic linkage disequilibrium (LD).We have recruited 204 probands (with schizophrenia) with their parents and siblings whenever possible. We have used NEO questionnaires for measuring personality and symptomatic dimensions. Heritabilities of personality dimensions in total 543 family members were estimated using Sequential Oligogenic Linkage Analysis Routines (SOLAR). Personality dimensions in total family members were compared with those in 307 healthy unrelated controls for measuring the familialities using ANOVA analysis.Four of the 5 NEO variables were significantly heritable and were included in the subsequent analyses. The 3 groups (control, unaffected first-degree relative, case) were found to be significantly different and with the expected order of average group scores for all heritable dimensions.Our results show that the aberrations in several personality dimensions could form the complexity of schizophrenic syndrome as a result of genetic-environment coactions or interactions in spite of some limitations (recruited family, phenotyping).
Project description:PurposeTo identify myopia susceptibility genes influencing common myopia in 94 African-American and 36 White families.DesignA prospective study of families with myopia consisting of a minimum of two individuals affected with myopia.MethodsExtended families consisting of at least two siblings affected with myopia were ascertained. A genome-wide linkage scan using 387 markers was conducted by the Center for Inherited Disease Research. Linkage analyses were conducted with parametric and nonparametric methods. Model-free linkage analysis was performed maximizing over penetrance and over dominance (that is, fitting a wide range of both dominant and recessive models).ResultsUnder the model-free analysis, the maximum two point heterogeneity logarithm of the odds score (MALOD) was 2.87 at D6S1009 in the White cohort and the maximum multipoint MALOD was 2.42 at D12S373-D12S1042 in the same cohort. The nonparametric linkage (NPL) maximum multipoint at D6S1035 had a P value of .005. An overall multipoint NPL score was obtained by combining NPL scores from both populations. The highest combined NPL score was observed at D20S478 with a significant P value of .008. Suggestive evidence of linkage in the White cohort mapped to a previously mapped locus on chromosome 11 at D11S1981 (NPL = 2.14; P = .02).ConclusionsSuggestive evidence of linkage to myopia in both African Americans and Whites was seen on chromosome 20 and became more significant when the scores were combined for both groups. The locus on chromosome 11 independently confirms a report by Hammond and associates mapping a myopia quantitative trait locus to this region.
Project description:Previous linkage studies in schizophrenia have been discouraging due to inconsistent findings and weak signals. Genetic heterogeneity has been cited as one of the primary culprits for such inconsistencies. We have performed a 10-cM autosomal genomewide linkage scan for schizophrenia susceptibility regions, using 29 multiplex families of Ashkenazi Jewish descent. Although there is no evidence that the rate of schizophrenia among the Ashkenazim differs from that in other populations, we have focused on this population in hopes of reducing genetic heterogeneity among families and increasing the detectable effects of any particular locus. We pursued both allele-sharing and parametric linkage analyses as implemented in Genehunter, version 2.0. Our strongest signal was achieved at chromosome 10q22.3 (D10S1686), with a nonparametric linkage score (NPL) of 3.35 (genomewide empirical P=.035) and a dominant heterogeneity LOD score (HLOD) of 3.14. Six other regions gave NPL scores >2.00 (on chromosomes 1p32.2, 4q34.3, 6p21.31, 7p15.2, 15q11.2, and 21q21.2). Upon follow-up with an additional 23 markers in the chromosome 10q region, our peak NPL score increased to 4.27 (D10S1774; empirical P=.00002), with a 95% confidence interval of 12.2 Mb for the location of the trait locus (D10S1677 to D10S1753). We find these results encouraging for the study of schizophrenia among Ashkenazi families and suggest further linkage and association studies in this chromosome 10q region.