Unknown

Dataset Information

0

Effect of Cholesterol on Membrane Fluidity and Association of A? Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword.


ABSTRACT: Background: The beta-amyloid peptide (A?) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by A? in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-?-cyclodextrin (M?CD) and M?CD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of A? to neuronal membranes (fluorescent-puncta/20 ?m: control = 18 ± 2 vs. M?CD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by A? with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. M?CD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of A? (fluorescent-puncta/20 ?m: control = 18 ± 2 vs. M?CD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of A? in hippocampal neurons, since fluidity can regulate distribution and insertion of the A? peptide in the neuronal membrane.

SUBMITTER: Fernandez-Perez EJ 

PROVIDER: S-EPMC6085471 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword.

Fernández-Pérez Eduardo J EJ   Sepúlveda Fernando J FJ   Peters Christian C   Bascuñán Denisse D   Riffo-Lepe Nicolás O NO   González-Sanmiguel Juliana J   Sánchez Susana A SA   Peoples Robert W RW   Vicente Benjamín B   Aguayo Luis G LG  

Frontiers in aging neuroscience 20180803


<b>Background:</b> The beta-amyloid peptide (Aβ) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the asso  ...[more]

Similar Datasets

| S-EPMC8196622 | biostudies-literature
| S-EPMC9104519 | biostudies-literature
| S-EPMC4635879 | biostudies-other
| S-EPMC4050133 | biostudies-literature
| S-EPMC8328766 | biostudies-literature
| S-EPMC6563107 | biostudies-literature
| S-EPMC7458881 | biostudies-literature
| S-EPMC11831209 | biostudies-literature
| S-EPMC8820723 | biostudies-literature
| S-EPMC5507827 | biostudies-literature