Project description:We aimed to determine patterns of α-synuclein (α-syn) pathology in multiple system atrophy (MSA) using 70-µm-thick sections of 20 regions of the central nervous system of 37 cases with striato-nigral degeneration (SND) and 10 cases with olivo-ponto-cerebellar atrophy (OPCA). In SND cases with the shortest disease duration (phase 1), α-syn pathology was observed in striatum, lentiform nucleus, substantia nigra, brainstem white matter tracts, cerebellar subcortical white matter as well as motor cortex, midfrontal cortex, and sensory cortex. SND with increasing duration of disease (phase 2) was characterized by involvement of spinal cord and thalamus, while phase 3 was characterized by involvement of hippocampus and amygdala. Cases with the longest disease duration (phase 4) showed involvement of the visual cortex. We observed an increasing overlap of α-syn pathology with increasing duration of disease between SND and OPCA, and noted increasingly similar regional distribution patterns of α-syn pathology. The GBA variant, p.Thr408Met, was found to have an allele frequency of 6.94% in SND cases which was significantly higher compared with normal (0%) and other neurodegenerative disease pathologies (0.74%), suggesting that it is associated with MSA. Our findings indicate that SND and OPCA show distinct early foci of α-syn aggregations, but increasingly converge with longer disease duration to show overlapping patterns of α-syn pathology.
Project description:Multiple system atrophy (MSA) is characterized by the presence of distinctive glial cytoplasmic inclusions (GCIs) within oligodendrocytes that contain the neuronal protein alpha-synuclein (aSyn) and the oligodendroglia-specific phosphoprotein TPPP/p25α. However, the role of oligodendroglial aSyn and p25α in the formation of aSyn-rich GCIs remains unclear. To address this conundrum, we have applied human aSyn (haSyn) pre-formed fibrils (PFFs) to rat wild-type (WT)-, haSyn-, or p25α-overexpressing oligodendroglial cells and to primary differentiated oligodendrocytes derived from WT, knockout (KO)-aSyn, and PLP-haSyn-transgenic mice. HaSyn PFFs are readily taken up by oligodendroglial cells and can recruit minute amounts of endogenous aSyn into the formation of insoluble, highly aggregated, pathological assemblies. The overexpression of haSyn or p25α accelerates the recruitment of endogenous protein and the generation of such aberrant species. In haSyn PFF-treated primary oligodendrocytes, the microtubule and myelin networks are disrupted, thus recapitulating a pathological hallmark of MSA, in a manner totally dependent upon the seeding of endogenous aSyn. Furthermore, using oligodendroglial and primary cortical cultures, we demonstrated that pathology-related S129 aSyn phosphorylation depends on aSyn and p25α protein load and may involve different aSyn "strains" present in oligodendroglial and neuronal synucleinopathies. Importantly, this hypothesis was further supported by data obtained from human post-mortem brain material derived from patients with MSA and dementia with Lewy bodies. Finally, delivery of haSyn PFFs into the mouse brain led to the formation of aberrant aSyn forms, including the endogenous protein, within oligodendroglia and evoked myelin decompaction in WT mice, but not in KO-aSyn mice. This line of research highlights the role of endogenous aSyn and p25α in the formation of pathological aSyn assemblies in oligodendrocytes and provides in vivo evidence of the contribution of oligodendroglial aSyn in the establishment of aSyn pathology in MSA.
Project description:AimsThe aim of this study was to identify early foci of α-synuclein (α-syn pathology) accumulation, subsequent progression and neurodegeneration in multiple system atrophy of the cerebellar type (MSA-C).MethodsWe analysed 70-μm-thick sections of 10 cases with MSA-C and 24 normal controls.ResultsMSA-C cases with the lowest burden of pathology showed α-syn glial cytoplasmic inclusions (GCIs) in the cerebellum as well as in medullary and pontine cerebellar projections. Cerebellar pathology was highly selective and severely involved subcortical white matter, whereas deep white matter and granular layer were only mildly affected and the molecular layer was spared. Loss of Purkinje cells increased with disease duration and was associated with neuronal and axonal abnormalities. Neocortex, basal ganglia and spinal cord became consecutively involved with the increasing burden of α-syn pathology, followed by hippocampus, amygdala, and, finally, the visual cortex. GCIs were associated with myelinated axons, and the severity of GCIs correlated with demyelination.ConclusionsOur findings indicate that cerebellar subcortical white matter and cerebellar brainstem projections are likely the earliest foci of α-syn pathology in MSA-C, followed by involvement of more widespread regions of the central nervous system and neurodegeneration with disease progression.
Project description:BackgroundThe formation of alpha-synuclein aggregates may be a critical event in the pathogenesis of multiple system atrophy (MSA). However, the role of this gene in the aetiology of MSA is unknown and untested.MethodThe linkage disequilibrium (LD) structure of the alpha-synuclein gene was established and LD patterns were used to identify a set of tagging single nucleotide polymorphisms (SNPs) that represent 95% of the haplotype diversity across the entire gene. The effect of polymorphisms on the pathological expression of MSA in pathologically confirmed cases was also evaluated.Results and conclusionIn 253 Gilman probable or definite MSA patients, 457 possible, probable, and definite MSA cases and 1472 controls, a frequency difference for the individual tagging SNPs or tag-defined haplotypes was not detected. No effect was observed of polymorphisms on the pathological expression of MSA in pathologically confirmed cases.
Project description:Multiple system atrophy (MSA) is pathologically characterized by the presence of fibrillar α-synuclein-immunoreactive inclusions in oligodendrocytes. Although the myelinating process of oligodendrocytes can be observed in adult human brains, little is known regarding the presence of α-synuclein pathology in immature oligodendrocytes and how their maturation and myelination are affected in MSA brains. Recently, breast carcinoma amplified sequence 1 (BCAS1) has been found to be specifically expressed in immature oligodendrocytes undergoing maturation and myelination. Here, we analyzed the altered dynamics of oligodendroglial maturation in both MSA brains and primary oligodendroglial cell cultures which were incubated with α-synuclein pre-formed fibrils. The numbers of BCAS1-expressing oligodendrocytes that displayed a matured morphology negatively correlated with the density of pathological inclusions in MSA brains but not with that in Parkinson's disease and diffuse Lewy body disease. In addition, a portion of the BCAS1-expressing oligodendrocyte population showed cytoplasmic inclusions, which were labeled with antibodies against phosphorylated α-synuclein and cleaved caspase-9. Further in vitro examination indicated that the α-synuclein pre-formed fibrils induced cytoplasmic inclusions in the majority of BCAS1-expressing oligodendrocytes. In contrast, the majority of BCAS1-non-expressing mature oligodendrocytes did not develop inclusions on day 4 after maturation induction. Furthermore, exposure of α-synuclein pre-formed fibrils in the BCAS1-positive phase caused a reduction in oligodendroglial cell viability. Our results indicated that oligodendroglial maturation and myelination are impaired in the BCAS1-positive phase of MSA brains, which may lead to the insufficient replacement of defective oligodendrocytes. In vitro, the high susceptibility of BCAS1-expressing primary oligodendrocytes to the extracellular α-synuclein pre-formed fibrils suggests the involvement of insufficient oligodendroglial maturation in MSA disease progression and support the hypothesis that the BCAS1-positive oligodendrocyte lineage cells are prone to take up aggregated α-synuclein in vivo.
Project description:Synucleinopathies, which include multiple system atrophy (MSA), Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies (DLB), are human neurodegenerative diseases1. Existing treatments are at best symptomatic. These diseases are characterized by the presence of, and believed to be caused by the formation of, filamentous inclusions of α-synuclein in brain cells2,3. However, the structures of α-synuclein filaments from the human brain are unknown. Here, using cryo-electron microscopy, we show that α-synuclein inclusions from the brains of individuals with MSA are made of two types of filament, each of which consists of two different protofilaments. In each type of filament, non-proteinaceous molecules are present at the interface of the two protofilaments. Using two-dimensional class averaging, we show that α-synuclein filaments from the brains of individuals with MSA differ from those of individuals with DLB, which suggests that distinct conformers or strains characterize specific synucleinopathies. As is the case with tau assemblies4-9, the structures of α-synuclein filaments extracted from the brains of individuals with MSA differ from those formed in vitro using recombinant proteins, which has implications for understanding the mechanisms of aggregate propagation and neurodegeneration in the human brain. These findings have diagnostic and potential therapeutic relevance, especially because of the unmet clinical need to be able to image filamentous α-synuclein inclusions in the human brain.
Project description:Multiple system atrophy (MSA) is an insidious middle age-onset neurodegenerative disease that clinically presents with variable degrees of parkinsonism and cerebellar ataxia. The pathological hallmark of MSA is the progressive accumulation of glial cytoplasmic inclusions (GCIs) in oligodendrocytes that are comprised of α-synuclein (αSyn) aberrantly polymerized into fibrils. Experimentally, MSA brain samples display a high level of seeding activity to induce further αSyn aggregation by a prion-like conformational mechanism. Paradoxically, αSyn is predominantly a neuronal brain protein, with only marginal levels expressed in normal or diseased oligodendrocytes, and αSyn inclusions in other neurodegenerative diseases, including Parkinson's disease and Dementia with Lewy bodies, are primarily found in neurons. Although GCIs are the hallmark of MSA, using a series of new monoclonal antibodies targeting the carboxy-terminal region of αSyn, we demonstrate that neuronal αSyn pathology in MSA patient brains is remarkably abundant in the pontine nuclei and medullary inferior olivary nucleus. This neuronal αSyn pathology has distinct histological properties compared to GCIs, which allows it to remain concealed to many routine detection methods associated with altered biochemical properties of the carboxy-terminal domain of αSyn. We propose that these previously underappreciated sources of aberrant αSyn could serve as a pool of αSyn prion seeds that can initiate and continue to drive the pathogenesis of MSA.
Project description:Multiple system atrophy (MSA) is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of ?-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of ?-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson's disease to MSA. Nonetheless, controversies persist, such as the role of common ?-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on ?-synuclein mutations.
Project description:AimsThis study aimed to assess clinicopathologic features of transactive response DNA-binding protein of 43 kDa (TDP-43) pathology and its risk factors in multiple system atrophy (MSA).MethodsParaffin-embedded sections of the amygdala and basal forebrain from 186 autopsy-confirmed MSA cases were screened with immunohistochemistry for phospho-TDP-43. In cases having TDP-43 pathology, additional brain regions were assessed. Immunohistochemical and immunofluorescence double-staining and immunogold electron microscopy (IEM) were performed to evaluate colocalization of TDP-43 and α-synuclein. Genetic risk factors for TDP-43 pathology were also analysed.ResultsImmunohistochemistry showed various morphologies of TDP-43 pathology in 13 cases (7%), such as subpial astrocytic inclusions, neuronal inclusions, dystrophic neurites, perivascular inclusions and glial cytoplasmic inclusions (GCIs). Multivariable logistic regression models revealed that only advanced age, but not concurrent Alzheimer's disease, argyrophilic grain disease or hippocampal sclerosis, was an independent risk factor for TDP-43 pathology in MSA (OR: 1.11, 95% CI: 1.04-1.19, P = 0.002). TDP-43 pathology was restricted to the amygdala in eight cases and extended to the hippocampus in two cases. The remaining three cases had widespread TDP-43 pathology. Immunohistochemical and immunofluorescence double-staining and IEM revealed colocalization of α-synuclein and TDP-43 in GCIs with granule-coated filaments. Pilot genetic studies failed to show associations between risk variants of TMEM106B or GRN and TDP-43 pathology.ConclusionsTDP-43 pathology is rare in MSA and occurs mainly in the medial temporal lobe. Advanced age is a risk factor for TDP-43 pathology in MSA. Colocalization of TDP-43 and α-synuclein in GCIs suggests possible direct interaction between the two molecules.
Project description:BackgroundMultiple system atrophy (MSA) is a neurodegenerative condition characterized by variable combinations of parkinsonism, autonomic failure, cerebellar ataxia and pyramidal features. Although the distribution of synucleinopathy correlates with the predominant clinical features, the burden of pathology does not fully explain observed differences in clinical presentation and rate of disease progression. We hypothesized that the clinical heterogeneity in MSA is a consequence of variability in the seeding activity of α-synuclein both between different patients and between different brain regions.MethodsThe reliable detection of α-synuclein seeding activity derived from MSA using cell-free amplification assays remains challenging. Therefore, we conducted a systematic evaluation of 168 different reaction buffers, using an array of pH and salts, seeded with fully characterized brain homogenates from one MSA and one PD patient. We then validated the two conditions that conferred the optimal ability to discriminate between PD- and MSA-derived samples in a larger cohort of 40 neuropathologically confirmed cases, including 15 MSA. Finally, in a subset of brains, we conducted the first multi-region analysis of seeding behaviour in MSA.ResultsUsing our novel buffer conditions, we show that the physicochemical factors that govern the in vitro amplification of α-synuclein can be tailored to generate strain-specific reaction buffers that can be used to reliably study the seeding capacity from MSA-derived α-synuclein. Using this novel approach, we were able to sub-categorize the 15 MSA brains into 3 groups: high, intermediate and low seeders. To further demonstrate heterogeneity in α-synuclein seeding in MSA, we conducted a comprehensive multi-regional evaluation of α-synuclein seeding in 13 different regions from 2 high seeders, 2 intermediate seeders and 2 low seeders.ConclusionsWe have identified unexpected differences in seed-competent α-synuclein across a cohort of neuropathologically comparable MSA brains. Furthermore, our work has revealed a substantial heterogeneity in seeding activity, driven by the PBS-soluble α-synuclein, between different brain regions of a given individual that goes beyond immunohistochemical observations. Our observations pave the way for future subclassification of MSA, which exceeds conventional clinical and neuropathological phenotyping and considers the structural and biochemical heterogeneity of α-synuclein present. Finally, our methods provide an experimental framework for the development of vitally needed, rapid and sensitive diagnostic assays for MSA.