Project description:The use of Bruton tyrosine kinase (BTK) inhibitors to block B-cell receptor (BCR)-dependent NF-κB activation in lymphoid malignancies has been a major clinical advance, yet acquired therapeutic resistance is a recurring problem. We modeled the development of resistance to the BTK inhibitor ibrutinib in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma, which relies on chronic active BCR signaling for survival. The primary mode of resistance was epigenetic, driven in part by the transcription factor TCF4. The resultant phenotypic shift altered BCR signaling such that the GTPase RAC2 substituted for BTK in the activation of phospholipase Cγ2, thereby sustaining NF-κB activity. The interaction of RAC2 with phospholipase Cγ2 was also increased in chronic lymphocytic leukemia cells from patients with persistent or progressive disease on BTK inhibitor treatment. We identified clinically available drugs that can treat epigenetic ibrutinib resistance, suggesting combination therapeutic strategies.SignificanceIn diffuse large B-cell lymphoma, we show that primary resistance to BTK inhibitors is due to epigenetic rather than genetic changes that circumvent the BTK blockade. We also observed this resistance mechanism in chronic lymphocytic leukemia, suggesting that epigenetic alterations may contribute more to BTK inhibitor resistance than currently thought.See related commentary by Pasqualucci, p. 555. This article is highlighted in the In This Issue feature, p. 549.
Project description:Testicular germ cell tumors (GCTs) are highly curable malignancies. Excellent survival rates in patients with metastatic disease can be attributed to the exceptional sensitivity of GCTs to cisplatin-based chemotherapy. This hypersensitivity is probably related to alterations in the DNA repair of cisplatin-induced DNA damage, and an excessive apoptotic response. However, chemotherapy fails due to the development of cisplatin resistance in a proportion of patients. The molecular basis of this resistance appears to be multifactorial. Tracking the mechanisms of cisplatin resistance in GCTs, multiple molecules have been identified as potential therapeutic targets. A variety of therapeutic agents have been evaluated in preclinical and clinical studies. These include different chemotherapeutics, targeted therapies, such as tyrosine kinase inhibitors, mTOR inhibitors, PARP inhibitors, CDK inhibitors, and anti-CD30 therapy, as well as immune-checkpoint inhibitors, epigenetic therapy, and others. These therapeutics have been used as single agents or in combination with cisplatin. Some of them have shown promising in vitro activity in overcoming cisplatin resistance, but have not been effective in clinical trials in refractory GCT patients. This review provides a summary of current knowledge about the molecular mechanisms of cisplatin sensitivity and resistance in GCTs and outlines possible therapeutic approaches that seek to overcome this chemoresistance.
Project description:Immunotherapies have been successfully developed for the treatment of B-cell acute lymphoblastic leukemia (B-ALL) with FDA approval of blinatumomab, inotuzumab, and tisagenlecleucel for relapsed or refractory patients. These agents target either CD19 or CD22, which are both expressed on the surface of the leukemic blasts in the majority of patients. The use of these agents has greatly transformed the landscape of available treatment, and it has provided curative therapy in some patients. As the field has matured, we are learning that for most patients, the currently available immunotherapies are not curative. Leukemic resistance to both CD19 and CD22 pressure has been described and is a major component of developed resistance to these therapies. Patients with B-ALL have developed CD19- or CD22-negative B-ALL, and in more rare cases, they have undergone lineage switch to acute myeloid leukemia. Current efforts are focusing on overcoming antigen escape, either by forced antigen expression or by dual-targeting therapies. A functional immune system is also required for maximal benefit of immunotherapy, particularly with chimeric antigen receptor (CAR) T-cell therapies. Data are now being produced that may allow for the prospective identification of patients whose immune deficits may be identified up front and predict failure. Preclinical work is focusing on additional engineering of CAR T cells to overcome these inherent immune deficits. Last, with improved knowledge of which patients are likely to benefit from immunotherapy as definitive treatment, those patients who are predicted to develop resistance may be prospectively recommended to undergo a consolidative hematopoietic cell transplant to lessen the recurrence risk.
Project description:The current standard of care for metastatic urothelial carcinoma is cisplatin-based chemotherapy but treatment is generally not curative. Mechanisms of resistance to conventional cytotoxic regimens include tumor cell drug efflux pumps, intracellular anti-oxidants, and enhanced anti-apoptotic signaling. Blockade of signaling pathways with small molecule tyrosine kinase inhibitors has produced dramatic responses in subsets of other cancers. Multiple potential signaling pathway targets are altered in Urothelial carcinoma (UC). Blockade of the PI3K/Akt/mTOR pathway may prove efficacious because 21% have activating PI3K mutations and another 30% have PTEN inactivation (which leads to activation of this pathway). The fibroblast growth factor receptor 3 protein may be overactive in 50-60% and agents which block this pathway are under development. Blockade of multiple other pathways including HER2 and aurora kinase also have potential efficacy. Anti-angiogenic and immunotherapy strategies are also under development in UC and are discussed in this review. Novel therapeutic approaches are needed in UC. We review the various strategies under investigation and discuss how best to evaluate and optimize their efficacy.
Project description:Enzalutamide, a second-generation small-molecule inhibitor of the androgen receptor (AR), has been approved for patients who failed with androgen deprivation therapy and have developed castration-resistant prostate cancer. More than 80% of these patients develop bone metastases. The binding of enzalutamide to the AR prevents the nuclear translocation of the receptor, thus inactivating androgen signaling. However, prostate cancer cells eventually develop resistance to enzalutamide treatment. Studies have found resistance both in patients and in laboratory models. The mechanisms of and approaches to overcoming such resistance are significant issues that need to be addressed. In this review, we focus on the major mechanisms of acquired enzalutamide resistance, including genetic mutations and splice variants of the AR, signaling pathways that bypass androgen signaling, intratumoral androgen biosynthesis by prostate tumor cells, lineage plasticity, and contributions from the tumor microenvironment. Approaches for overcoming these mechanisms to enzalutamide resistance along with the associated problems and solutions are discussed. Emerging questions, concerns, and new opportunities in studying enzalutamide resistance will be addressed as well.
Project description:Sarcomas are a class of rare malignancies of mesenchymal origin with a heterogeneous histological spectrum. They are classically associated with poor outcomes, especially once metastasized. A path to improving clinical outcomes may be made through modifying the epigenome, where a variety of sarcomas demonstrate changes that contribute to their oncogenic phenotypes. This Perspective article identifies and describes changes in the sarcoma genome, while discussing specific epigenetic changes and their effect on clinical outcomes. Clinical attempts at modulating epigenetics in sarcoma are reviewed, as well as potential implications of these studies. Epigenetic targets to reverse and delay chemotherapy resistance are discussed. Future directions with primary next steps are proposed to invigorate the current understanding of epigenetic biomarkers to enact targeted therapies to epigenetic phenotypes of sarcoma subtypes. Modifications to prior studies, as well as proposed clinical steps, are also addressed.
Project description:Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.SignificanceGenomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.
Project description:Gastrointestinal (GI) cancers, such as of the colon and pancreas, are highly resistant to both standard and targeted therapeutics. Therapy-resistant and heterogeneous GI cancers harbor highly complex signaling networks (the resistome) that resist apoptotic programming. Commonly used gemcitabine or platinum-based regimens fail to induce meaningful (i.e. disease-reversing) perturbations in the resistome, resulting in high rates of treatment failure. The GI cancer resistance networks are, in part, due to interactions between parallel signaling and aberrantly expressed microRNAs (miRNAs) that collectively promote the development and survival of drug-resistant cancer stem cells with epithelial-to-mesenchymal transition (EMT) characteristics. The lack of understanding of the resistance networks associated with this subpopulation of cells as well as reductionist, single protein-/pathway-targeted approaches have made 'effective drug design' a difficult task. We propose that the successful design of novel therapeutic regimens to target drug-resistant GI tumors is only possible if network-based drug avenues and agents, in particular 'natural agents' with no known toxicity, are correctly identified. Natural agents (dietary agents or their synthetic derivatives) can individually alter miRNA profiles, suppress EMT pathways and eliminate cancer stem-like cells that derive from pancreatic cancer and colon cancer, by partially targeting multiple yet meaningful networks within the GI cancer resistome. However, the efficacy of these agents as combinations (e.g. consumed in the diet) against this resistome has never been studied. This short review article provides an overview of the different challenges involved in the understanding of the GI resistome, and how novel computational biology can help in the design of effective therapies to overcome resistance.
Project description:The discovery that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by druggable protein kinases has led to a revolutionary change in nonsmall cell lung cancer (NSCLC) treatment. Epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) are the targets of several tyrosine kinase inhibitors (TKIs), some of them approved for treatment and others currently in clinical development. First-generation agents offer, in target populations, a substantial improvement of outcomes compared with standard chemotherapy in the treatment of advanced NSCLC. Unfortunately, drug resistance develops after initial benefit through a variety of mechanisms. Novel generation EGFR and ALK inhibitors are currently in advanced clinical development and are producing encouraging results in patients with acquired resistance to previous generation agents. The search for new drugs or strategies to overcome the TKI resistance in patients with EGFR mutations or ALK rearrangements is to be considered a priority for the improvement of outcomes in the treatment of advanced NSCLC.
Project description:Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications play an important role in directing the transcriptional machinery and therefore represent interesting druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed that most of them were designed without a mechanistic approach and, importantly, without careful patient selection.