Unknown

Dataset Information

0

Normalized field autocorrelation function-based optical coherence tomography three-dimensional angiography.


ABSTRACT: Optical coherence tomography angiography (OCTA) has been widely used for en face visualization of the microvasculature, but is challenged for real three-dimensional (3-D) topologic imaging due to the "tail" artifacts that appear below large vessels. Further, OCTA is generally incapable of differentiating descending arterioles from ascending venules. We introduce a normalized field autocorrelation function-based OCTA (g1-OCTA), which minimizes the tail artifacts and is capable of distinguishing penetrating arterioles from venules in the 3-D image. g1???(?????)?? is calculated from repeated optical coherence tomography (OCT) acquisitions for each spatial location. The decay amplitude of g1???(?????)?? is retrieved to represent the dynamics for each voxel. To account for the small g1???(?????)?? decay in capillaries where red blood cells are flowing slowly and discontinuously, Intralipid is injected to enhance the OCT signal. We demonstrate that the proposed technique realizes 3-D OCTA with negligible tail projections and the penetrating arteries are readily identified. In addition, compared to regular OCTA, the proposed g1-OCTA largely increased the depth-of-field. This technique provides a more accurate rendering of the vascular 3-D anatomy and has the potential for more quantitative characterization of vascular networks.

SUBMITTER: Tang J 

PROVIDER: S-EPMC6414735 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Normalized field autocorrelation function-based optical coherence tomography three-dimensional angiography.

Tang Jianbo J   Erdener Sefik Evren SE   Sunil Smrithi S   Boas David A DA  

Journal of biomedical optics 20190301 3


Optical coherence tomography angiography (OCTA) has been widely used for en face visualization of the microvasculature, but is challenged for real three-dimensional (3-D) topologic imaging due to the "tail" artifacts that appear below large vessels. Further, OCTA is generally incapable of differentiating descending arterioles from ascending venules. We introduce a normalized field autocorrelation function-based OCTA (g1-OCTA), which minimizes the tail artifacts and is capable of distinguishing p  ...[more]

Similar Datasets

| S-EPMC6502067 | biostudies-literature
| 2618337 | ecrin-mdr-crc
| S-EPMC3087827 | biostudies-literature
| S-EPMC5909979 | biostudies-literature
| S-EPMC8585951 | biostudies-literature