Unknown

Dataset Information

0

Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe.


ABSTRACT: Time-resolved fluorescence lifetime imaging (FLIM) in the near-infrared region of 900-1700 nm not only allows a deep tissue penetration depth but also offers the unique benefit of the quantitative visualization of molecular events in vivo and is independent of local luminescence intensity and fluorophore concentration. Herein, we report the design of a wide-range pH sensitive molecular probe based on Yb3+ porphyrinate. The Yb3+ probe shows increasing NIR emission and lifetime with pK a values of ca. 6.6 from pH 9.0 and 5.0 and also displays an elongated lifetime from ca. 135 to 170 μs at lower pH values (5.0-1.0) due to aggregation and reduced exposure to water at low pH values. Importantly, the probe is able to monitor a wide range of in vivo gastrointestinal pH values in mice models and the potential applications in imaging-guided gastrointestinal diagnostics and therapeutics were revealed. This study shows that lifetime contrast is important for preclinical imaging; lanthanide complexes could be successfully used in the design of stimuli-responsive NIR τ probes for advanced in vivo imaging.

SUBMITTER: Ning Y 

PROVIDER: S-EPMC6471977 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fluorescence lifetime imaging of upper gastrointestinal pH <i>in vivo</i> with a lanthanide based near-infrared <i>τ</i> probe.

Ning Yingying Y   Cheng Shengming S   Wang Jing-Xiang JX   Liu Yi-Wei YW   Feng Wei W   Li Fuyou F   Zhang Jun-Long JL  

Chemical science 20190227 15


Time-resolved fluorescence lifetime imaging (FLIM) in the near-infrared region of 900-1700 nm not only allows a deep tissue penetration depth but also offers the unique benefit of the quantitative visualization of molecular events <i>in vivo</i> and is independent of local luminescence intensity and fluorophore concentration. Herein, we report the design of a wide-range pH sensitive molecular probe based on Yb<sup>3+</sup> porphyrinate. The Yb<sup>3+</sup> probe shows increasing NIR emission and  ...[more]

Similar Datasets

| S-EPMC3077686 | biostudies-literature
| S-EPMC10902792 | biostudies-literature
| S-EPMC10040441 | biostudies-literature
| S-EPMC2705288 | biostudies-literature
| S-EPMC6987190 | biostudies-literature
| S-EPMC9076276 | biostudies-literature
| S-EPMC9419235 | biostudies-literature
| S-EPMC8979032 | biostudies-literature
| S-EPMC5609830 | biostudies-literature
| S-EPMC10810770 | biostudies-literature