Unknown

Dataset Information

0

Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook.


ABSTRACT: Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method by which to objectively identify early relapse warning signs could facilitate swift intervention. We collected 52,815 Facebook posts across 51 participants with recent onset psychosis (mean age?=?23.96 years; 70.58% male) and applied anomaly detection to explore linguistic and behavioral changes associated with psychotic relapse. We built a one-class classification model that makes patient-specific personalized predictions on risk to relapse. Significant differences were identified in the words posted to Facebook in the month preceding a relapse hospitalization compared to periods of relative health, including increased usage of words belonging to the swear (p?< 0.0001, Wilcoxon signed rank test), anger (p?< 0.001), and death (p?< 0.0001) categories, decreased usage of words belonging to work (p?=?0.00579), friends (p?< 0.0001), and health (p?< 0.0001) categories, as well as a significantly increased use of first (p?< 0.0001) and second-person (p??< 0.001) pronouns. We additionally observed a significant increase in co-tagging (p?< 0.001) and friending (p?< 0.0001) behaviors in the month before a relapse hospitalization. Our classifier achieved a specificity of 0.71 in predicting relapse. Results indicate that social media activity captures objective linguistic and behavioral markers of psychotic relapse in young individuals with recent onset psychosis. Machine-learning models were capable of making personalized predictions of imminent relapse hospitalizations at the patient-specific level.

SUBMITTER: Birnbaum ML 

PROVIDER: S-EPMC6779748 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook.

Birnbaum M L ML   Ernala S K SK   Rizvi A F AF   Arenare E E   R Van Meter A A   De Choudhury M M   Kane J M JM  

NPJ schizophrenia 20191007 1


Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method by which to objectively identify early relapse warning signs could facilitate swift intervention. We collected 52,815 Facebook posts across 51 participants with recent onset psychosis (mean age = 23.96  ...[more]

Similar Datasets

2017-04-03 | E-MTAB-5587 | biostudies-arrayexpress
| S-EPMC7951906 | biostudies-literature
| S-EPMC11650710 | biostudies-literature
| S-EPMC4472695 | biostudies-literature
| S-EPMC11683510 | biostudies-literature
| S-EPMC10949211 | biostudies-literature
| S-EPMC7713057 | biostudies-literature
| S-EPMC7142743 | biostudies-literature
| S-EPMC7356546 | biostudies-literature
| S-EPMC8783287 | biostudies-literature