Project description:BackgroundThe carbohydrate-insulin model of obesity posits that habitual consumption of a high-carbohydrate diet sequesters fat within adipose tissue because of hyperinsulinemia and results in adaptive suppression of energy expenditure (EE). Therefore, isocaloric exchange of dietary carbohydrate for fat is predicted to result in increased EE, increased fat oxidation, and loss of body fat. In contrast, a more conventional view that "a calorie is a calorie" predicts that isocaloric variations in dietary carbohydrate and fat will have no physiologically important effects on EE or body fat.ObjectiveWe investigated whether an isocaloric low-carbohydrate ketogenic diet (KD) is associated with changes in EE, respiratory quotient (RQ), and body composition.DesignSeventeen overweight or obese men were admitted to metabolic wards, where they consumed a high-carbohydrate baseline diet (BD) for 4 wk followed by 4 wk of an isocaloric KD with clamped protein. Subjects spent 2 consecutive days each week residing in metabolic chambers to measure changes in EE (EEchamber), sleeping EE (SEE), and RQ. Body composition changes were measured by dual-energy X-ray absorptiometry. Average EE during the final 2 wk of the BD and KD periods was measured by doubly labeled water (EEDLW).ResultsSubjects lost weight and body fat throughout the study corresponding to an overall negative energy balance of ∼300 kcal/d. Compared with BD, the KD coincided with increased EEchamber (57 ± 13 kcal/d, P = 0.0004) and SEE (89 ± 14 kcal/d, P < 0.0001) and decreased RQ (-0.111 ± 0.003, P < 0.0001). EEDLW increased by 151 ± 63 kcal/d (P = 0.03). Body fat loss slowed during the KD and coincided with increased protein utilization and loss of fat-free mass.ConclusionThe isocaloric KD was not accompanied by increased body fat loss but was associated with relatively small increases in EE that were near the limits of detection with the use of state-of-the-art technology. This trial was registered at clinicaltrials.gov as NCT01967563.
Project description:BACKGROUND:A previously published pilot study assessed energy expenditure (EE) of participants with overweight and obesity after they were switched from a baseline high-carbohydrate diet (BD) to an isocaloric low-carbohydrate ketogenic diet (KD). EE measured using metabolic chambers increased transiently by what was considered a relatively small extent after the switch to the KD, whereas EE measured using doubly labeled water (EEDLW) increased to a greater degree after the response in the chambers had waned. Using a publicly available dataset, we examined the effect of housing conditions on the magnitude of the increase in EEDLW after the switch to the KD and the role of physical activity in that response. METHODS:The 14-day EEDLW measurement period included 4 days when subjects were confined to chambers instead of living in wards. To determine the effect on EEDLW only for the days subjects were living in the wards, we calculated non-chamber EE (EEnonchamber). To assess the role of physical activity in the response to the KD, we analyzed chamber and non-chamber accelerometer data for the BD and KD EEDLW measurement periods. RESULTS:In comparison with the increase in average 14-day EEDLW of 151 kcal/d ± 63 (P = 0.03) after the switch to the KD, EEnonchamber increased by 203 ± 89 kcal/d (P = 0.04) or 283 ± 116 kcal/d (P = 0.03) depending on the analytical approach. Hip accelerometer counts decreased significantly (P = 0.01) after the switch to the KD, whereas wrist and ankle accelerometer counts did not change. CONCLUSIONS:Switching from the BD to the KD substantially increased EEDLW, but apparently only on days subjects were living in the ward outside the metabolic chamber. Increased physical activity as measured by accelerometry did not appear to account for this effect.
Project description:Low-carbohydrate, high-fat ketogenic diets (KD) have been suggested to be more effective in promoting weight loss than conventional caloric restriction, whereas their effect on hepatic glucose and lipid metabolism and the mechanisms by which they may promote weight loss remain controversial. The aim of this study was to explore the role of KD on liver and muscle insulin sensitivity, hepatic lipid metabolism, energy expenditure, and food intake. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in mice fed a KD or regular chow (RC). Body composition was assessed by ¹H magnetic resonance spectroscopy. Despite being 15% lighter (P < 0.001) than RC-fed mice because of a 17% increase in energy expenditure (P < 0.001), KD-fed mice manifested severe hepatic insulin resistance, as reflected by decreased suppression (0% vs. 100% in RC-fed mice, P < 0.01) of endogenous glucose production during the clamp. Hepatic insulin resistance could be attributed to a 350% increase in hepatic diacylglycerol content (P < 0.001), resulting in increased activation of PKC? (P < 0.05) and decreased insulin receptor substrate-2 tyrosine phosphorylation (P < 0.01). Food intake was 56% (P < 0.001) lower in KD-fed mice, despite similar caloric intake, and could partly be attributed to a more than threefold increase (P < 0.05) in plasma N-acylphosphatidylethanolamine concentrations. In conclusion, despite preventing weight gain in mice, KD induces hepatic insulin resistance secondary to increased hepatic diacylglycerol content. Given the key role of nonalcoholic fatty liver disease in the development of type 2 diabetes and the widespread use of KD for the treatment of obesity, these results may have potentially important clinical implications.
Project description:ObjectiveThis study assessed longitudinal changes in body composition, fat distribution and energy balance in perimenopausal women. We hypothesized that total fat and abdominal body fat would increase at menopause due to decreased energy expenditure (EE) and declining estrogen, respectively.DesignObservational, longitudinal study with annual measurements for 4 years.SubjectsHealthy women (103 Caucasian; 53 African-American), initially premenopausal. During follow-up, lack of menstruation for 1 year and follicle-stimulating hormone >30 mIU ml(-1) defined a subject as postmenopausal.MeasurementsFat and lean mass (dual-energy X-ray absorptiometry), visceral (VAT) and subcutaneous abdominal fat (SAT) (computed tomography), dietary intake (4-day food record), serum sex hormones and physical activity (tri-axial accelerometry). Twenty-four hour EE was measured by whole-room calorimeter in a subset of 34 women at baseline and at year 4.ResultsBody fat and weight increased significantly over time only in those women who became postmenopausal by year 4 (n=51). All women gained SAT over time; however, only those who became postmenopausal had a significant increase in VAT. The postmenopausal group also exhibited a significant decrease in serum estradiol. Physical activity decreased significantly 2 years before menopause and remained low. Dietary energy, protein, carbohydrate and fiber intake were significantly higher 3-4 years before the onset of menopause compared with menopause onset. Twenty-four hour EE and sleeping EE decreased significantly with age; however, the decrease in sleeping EE was 1.5-fold greater in women who became postmenopausal compared with premenopausal controls (-7.9 vs -5.3%). Fat oxidation decreased by 32% in women who became postmenopausal (P<0.05), but did not change in those who remained premenopausal.ConclusionMiddle-aged women gained SAT with age, whereas menopause per se was associated with an increase in total body fat and VAT. Menopause onset is associated with decreased EE and fat oxidation that can predispose to obesity if lifestyle changes are not made.
Project description:Anxiety disorders are associated with body weight changes in humans. However, the mechanisms underlying anxiety-induced weight changes remain poorly understood. Using Emx1Cre/+ mice, we deleted the gene for brain-derived neurotrophic factor (BDNF) in the cortex, hippocampus, and some amygdalar subregions. The resulting mutant mice displayed impaired GABAergic transmission and elevated anxiety. They were leaner when fed either a chow diet or a high-fat diet, owing to higher sympathetic activity, basal metabolic rate, brown adipocyte thermogenesis, and beige adipocyte formation, compared to control mice. BDNF re-expression in the amygdala rescued the anxiety and metabolic phenotypes in mutant mice. Conversely, anxiety induced by amygdala-specific Bdnf deletion or administration of an inverse GABAA receptor agonist increased energy expenditure. These results reveal that increased activities in anxiogenic circuits can reduce body weight by promoting adaptive thermogenesis and basal metabolism via the sympathetic nervous system and suggest that amygdalar GABAergic neurons are a link between anxiety and metabolic dysfunction.
Project description:A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1.
Project description:BackgroundEvidence for the effects of Parkinson disease on energy expenditure is incomplete and contradictory. A number of studies showed increased resting energy expenditure among patients with Parkinson disease whereas others did not. It was hypothesized that energy expenditure increases during exercise, based on findings in patients with a variable regime of anti-parkinsonian therapies and at different stages of the disease. However, energy expenditure during posture maintenance has been neglected. To better understand these issues, we studied energy expenditure in a homogenous population of Parkinson patients in an early stage of the disease and different states of activity.MethodsOxygen consumption was assessed in a group of 10 males with early Parkinson disease without dopaminergic treatment and controls matched for age and body composition. Oxygen consumption was measured at rest, during trunk unsupported sitting, and during exercise at different intensities (unloaded and loaded cycling).ResultsResting energy expenditure was similar between groups. Higher energy consumption was observed during maintenance of trunk posture at rest and during light intensity aerobic exercise (P < .05 for all conditions). The increment in energy expenditure associated with increased physical demand tended to be steeper in Parkinson disease.ConclusionResting energy expenditure is normal in Parkinson disease. However, energy expenditure increases during physical activity and even during the maintenance of unsupported posture among patients with Parkinson disease.
Project description:An overactive renin-angiotensin system is associated with obesity and the metabolic syndrome. However, the mechanisms behind it are unclear. Cleaving angiotensinogen to angiotensin I by renin is a rate-limiting step of angiotensin II production, but renin is suggested to have angiotensin-independent effects. We generated mice lacking renin (Ren1c) using embryonic stem cells from C57BL/6 mice, a strain prone to diet-induced obesity. Ren1c(-/-) mice are lean, insulin sensitive, and resistant to diet-induced obesity without changes in food intake and physical activity. The lean phenotype is likely due to a higher metabolic rate and gastrointestinal loss of dietary fat. Most of the metabolic changes in Ren1c(-/-) mice were reversed by angiotensin II administration. These results support a role for angiotensin II in the pathogenesis of diet-induced obesity and insulin resistance.
Project description:BackgroundWeight loss reduces energy expenditure, but the contribution of different macronutrients to this change is unclear.HypothesisWe tested the hypothesis that macronutrient composition of the diet might affect the partitioning of energy expenditure during weight loss.DesignA substudy of 99 participants from the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial had total energy expenditure (TEE) measured by doubly labeled water, and resting energy expenditure (REE) measured by indirect calorimetry at baseline and repeated at 6 months in 89 participants. Participants were randomly assigned to one of four diets with either 15 or 25% protein and 20 or 40% fat.ResultsTEE and REE were positively correlated with each other and with fat-free mass and body fat, at baseline and 6 months. The average weight loss of 8.1 ± 0.65 kg (least-square mean ± s.e.) reduced TEE by 120 ± 56 kcal per day and REE by 136 ± 18 kcal per day. A greater weight loss at 6 months was associated with a greater decrease in TEE and REE. Participants eating the high-fat diet (HF) lost significantly more fat-free mass (1.52 ± 0.55 kg) than the low-fat (LF) diet group (P<0.05). Participants eating the LF diet had significantly higher measures of physical activity than the HF group.ConclusionA greater weight loss was associated with a larger decrease in both TEE and REE. The LF diet was associated with significant changes in fat-free body mass and energy expenditure from physical activity compared with the HF diet.
Project description:Background/objectivesEpidemics of obesity and diabetes are escalating. High-calorie/high-fat food is a major cause for these global health issues, but molecular mechanisms underlying high-fat, diet-induced obesity are still not well understood. The aryl hydrocarbon receptor (AhR), a transcription factor that acts as a xenobiotic sensor, mediates environmental toxicant-induced obesity, insulin resistance and development of diabetes. AhR also influences lipid metabolism and diet-induced obesity. The effects of AhR deficiency on diet-induced obesity, hepatic steatosis and insulin resistance were examined.MethodsMale wild-type (WT), AhR null (AhR(-/-)) and AhR heterozygote (AhR(+/-)) mice were fed a normal chow diet (NCD, 10% kcal from fat) or a high-fat diet (HFD, 60% kcal from fat) for up to 14 weeks. Adiposity, adipose and liver morphology, insulin signaling, metabolic parameters and gene profiles were assessed.ResultsAhR deficiency protected against HFD-induced obesity, hepatic steatosis, insulin resistance and inflammation. Moreover, AhR deficiency preserved insulin signaling in major metabolic tissues. These protective effects result from a higher energy expenditure in AhR-deficient mice compared with WT. Levels of transcript for both the thermogenic gene, uncoupling protein 1 (Ucp1), in brown adipose tissue and mitochondrial β-oxidation genes in muscle were significantly higher in AhR(-/-) and AhR(+/-) mice compared with WT.ConclusionsThis work documents a physiologically relevant function for AhR in regulation of body weight, hepatic fat deposition, insulin sensitivity and energy expenditure under HFD exposure, suggesting that AhR signaling may be developed as a potential therapeutic target for treatment of obesity and metabolic disorders.