Unknown

Dataset Information

0

Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response.


ABSTRACT: OBJECTIVE:Peritoneal carcinomatosis (PC) occurs frequently in patients with gastric adenocarcinoma (GAC) and confers a poor prognosis. Multiplex profiling of primary GACs has been insightful but the underpinnings of PC's development/progression remain largely unknown. We characterised exome/transcriptome/immune landscapes of PC cells from patients with GAC aiming to identify novel therapeutic targets. DESIGN:We performed whole-exome sequencing (WES) and whole transcriptome sequencing (RNA-seq) on 44 PC specimens (43 patients with PC) including an integrative analysis of WES, RNA-seq, immune profile, clinical and pathological phenotypes to dissect the molecular pathogenesis, identifying actionable targets and/or biomarkers and comparison with TCGA primary GACs. RESULTS:We identified distinct alterations in PC versus primary GACs, such as more frequent CDH1 and TAF1 mutations, 6q loss and chr19 gain. Alterations associated with aggressive PC phenotypes emerged with increased mutations in TP53, CDH1, TAF1 and KMT2C, higher level of 'clock-like' mutational signature, increase in whole-genome doublings, chromosomal instability (particularly, copy number losses), reprogrammed microenvironment, enriched cell cycle pathways, MYC activation and impaired immune response. Integrated analysis identified two main molecular subtypes: 'mesenchymal-like' and 'epithelial-like' with discriminating response to chemotherapy (31% vs 71%). Patients with the less responsive 'mesenchymal-like' subtype had high expression of immune checkpoint T-Cell Immunoglobulin And Mucin Domain-Containing Protein 3 (TIM-3), its ligand galectin-9, V-domain Ig suppressor of T cell activation (VISTA) and transforming growth factor-? as potential therapeutic immune targets. CONCLUSIONS:We have uncovered the unique mutational landscape, copy number alteration and gene expression profile of PC cells and defined PC molecular subtypes, which correlated with PC therapy resistance/response. Novel targets and immune checkpoint proteins have been identified with a potential to be translated into clinics.

SUBMITTER: Wang R 

PROVIDER: S-EPMC6943252 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response.

Wang Ruiping R   Song Shumei S   Harada Kazuto K   Ghazanfari Amlashi Fatemeh F   Badgwell Brian B   Pizzi Melissa Pool MP   Xu Yan Y   Zhao Wei W   Dong Xiaochuan X   Jin Jiangkang J   Wang Ying Y   Scott Ailing A   Ma Lang L   Huo Longfei L   Vicente Diego D   Blum Murphy Mariela M   Shanbhag Namita N   Tatlonghari Ghia G   Thomas Irene I   Rogers Jane J   Kobayashi Makoto M   Vykoukal Jody J   Estrella Jeannelyn Santiano JS   Roy-Chowdhuri Sinchita S   Han Guangchun G   Zhang Shaojun S   Mao Xizeng X   Song Xingzhi X   Zhang Jianhua J   Gu Jian J   Johnson Randy L RL   Calin George Adrian GA   Calin George Adrian GA   Peng Guang G   Lee Ju-Seog JS   Hanash Samir M SM   Futreal Andrew A   Wang Zhenning Z   Wang Linghua L   Ajani Jaffer A JA  

Gut 20190606 1


<h4>Objective</h4>Peritoneal carcinomatosis (PC) occurs frequently in patients with gastric adenocarcinoma (GAC) and confers a poor prognosis. Multiplex profiling of primary GACs has been insightful but the underpinnings of PC's development/progression remain largely unknown. We characterised exome/transcriptome/immune landscapes of PC cells from patients with GAC aiming to identify novel therapeutic targets.<h4>Design</h4>We performed whole-exome sequencing (WES) and whole transcriptome sequenc  ...[more]

Similar Datasets

| EGAS00001003180 | EGA
| S-EPMC9262327 | biostudies-literature
| S-EPMC6992685 | biostudies-literature
| S-EPMC6819482 | biostudies-literature
| S-EPMC8100722 | biostudies-literature
| S-EPMC7459417 | biostudies-literature
| S-EPMC1828709 | biostudies-literature
| S-EPMC5840753 | biostudies-literature