Unknown

Dataset Information

0

Cytokines Induce Monkey Neural Stem Cell Differentiation through Notch Signaling.


ABSTRACT: The mammalian central nervous system (CNS) has a limited ability to renew the damaged cells after a brain or spinal cord injury whether it is nonhuman primates like monkeys or humans. Transplantation of neural stem cells (NSCs) is a potential therapy for CNS injuries due to their pluripotency and differentiation abilities. Cytokines play an important role in CNS development and repair of CNS injuries. However, the detailed cytokine signaling response in monkey neural stem cells is rarely studied. In our previous research, we isolated NSCs from the adult monkey brain and found the effects of cytokines on monkey NSCs. Now, we further analyzed the regulation mechanisms of cytokines to the proliferation of monkey NSCs such as bone morphogenic protein 4 (BMP4), BMP4/leukaemia inhibitory factor (LIF), or retinoic acid (RA)/Forskolin. The data showed that BMP4 inhibited cell proliferation to arrest, but it did not affect the stemness of NSCs. BMP4/LIF promoted the astrocyte-like differentiation of monkey NSCs, and RA/forskolin induced the neuronal differentiation of monkey NSCs. BMP4/LIF and RA/forskolin induced monkey NSC differentiation by regulating Notch signaling. These results provide some theoretical evidence for NSC therapy to brain or spinal cord injury in regenerative medicine.

SUBMITTER: Wang M 

PROVIDER: S-EPMC7244951 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cytokines Induce Monkey Neural Stem Cell Differentiation through Notch Signaling.

Wang Min M   Yu Liming L   Zhu Lu-Ying LY   He Hua H   Ren Jie J   Pan Jie J   Xie Xiaoyun X   Cai Chunhui C   Lu Lixia L   Tian Haibin H   Chen Li L   Zhang Ying Y   Liu Yuehua Y   Zhang Ce C   Gao Zhengliang Z   Han Xin-Xin XX  

BioMed research international 20200513


The mammalian central nervous system (CNS) has a limited ability to renew the damaged cells after a brain or spinal cord injury whether it is nonhuman primates like monkeys or humans. Transplantation of neural stem cells (NSCs) is a potential therapy for CNS injuries due to their pluripotency and differentiation abilities. Cytokines play an important role in CNS development and repair of CNS injuries. However, the detailed cytokine signaling response in monkey neural stem cells is rarely studied  ...[more]

Similar Datasets

| S-EPMC7706704 | biostudies-literature
| S-EPMC5998300 | biostudies-literature
| S-EPMC5390133 | biostudies-literature
| S-EPMC6206515 | biostudies-literature
| S-EPMC3773980 | biostudies-literature
| S-EPMC8155619 | biostudies-literature
| S-SCDT-EMBOR-2017-45472V1 | biostudies-other
| S-EPMC8918809 | biostudies-literature
| S-EPMC8709284 | biostudies-literature
| S-EPMC4082354 | biostudies-literature