Project description:Resistance to platinum-based chemotherapy is the major barrier to treating epithelial ovarian cancer. To improve patient outcomes, it is critical to identify the underlying mechanisms that promote platinum resistance. Emerging evidence supports the concept that platinum-based therapies are able to eliminate the bulk of differentiated cancer cells, but are unable to eliminate cancer initiating cells (CIC). To date, the relevant pathways that regulate ovarian CICs remain elusive. Several correlative studies have shown that Wnt/β-catenin pathway activation is associated with poor outcomes in patients with high-grade serous ovarian cancer (HGSOC). However, the functional relevance of these findings remain to be delineated. We have uncovered that Wnt/β-catenin pathway activation is a critical driver of HGSOC chemotherapy resistance, and targeted inhibition of this pathway, which eliminates CICs, represents a novel and effective treatment for chemoresistant HGSOC. Here we show that Wnt/β-catenin signaling is activated in ovarian CICs, and targeted inhibition of β-catenin potently sensitized cells to cisplatin and decreased CIC tumor sphere formation. Furthermore, the Wnt/β-catenin specific inhibitor iCG-001 potently sensitized cells to cisplatin and decreased stem-cell frequency in platinum resistant cells. Taken together, our data is the first report providing evidence that the Wnt/β-catenin signaling pathway maintains stem-like properties and drug resistance of primary HGSOC PDX derived platinum resistant models, and therapeutic targeting of this pathway with iCG-001/PRI-724, which has been shown to be well tolerated in Phase I trials, may be an effective treatment option.
Project description:PurposeCanonical Wnt/ β-catenin pathway is one mechanism being activated in platinum-resistant epithelial ovarian cancer (EOC). Detecting potential targets for Wnt pathway modulation as a putative future therapeutic approach was the aim of this study.MethodsBiological effects of different Wnt modulators (SB216763, XAV939 and triptolide) on the EOC cell lines A2780 and its platinum-resistant clone A2780cis were investigated via multiple functional tests. Immunohistochemistry (IHC) was carried out to compare the expression levels of Wnt marker proteins (β-catenin, snail/ slug, E-cadherin) in patient specimens and to correlate them with lifetime data.ResultsWe could show that activated Wnt signaling of the platinum-resistant EOC cell line A2780cis can be reversed by Wnt manipulators through SB216763 or XAV939. All Wnt manipulators tested consecutively decreased cell proliferation and cell viability. Apoptosis of A2780 and A2780cis was enhanced by triptolide in a dose-dependent manner, whereas cell migration was inhibited by SB216763 and triptolide. IHC analyses elucidated significantly different expression patterns for Wnt markers in the serous subtype. Herein, higher plasmatic snail/ slug expression is associated with improved progression-free (PFS) and overall survival (OS).ConclusionAccording to the described effects on EOC biology, all three Wnt manipulators seem to have the potential to augment the impact of a platinum-based chemotherapy in EOC. This is promising as a dominance of this pathway was confirmed in serous histology.
Project description:The association of BRCA1 and BRCA2 mutations with increased risk for developing epithelial ovarian cancer is well established. However, the observed clinical differences, particularly the improved therapy response and patient survival in BRCA2-mutant patients, are unexplained. Our objective is to identify molecular pathways that are differentially regulated upon the loss of BRCA1 and BRCA2 functions in ovarian cancer. Transcriptomic and pathway analyses comparing BRCA1-mutant, BRCA2-mutant, and homologous recombination wild-type ovarian tumors showed differential regulation of the Wnt/β-catenin pathway. Using Wnt3A-treated BRCA1/2 wild-type, BRCA1-null, and BRCA2-null mouse ovarian cancer cells, we observed preferential activation of canonical Wnt/β-catenin signaling in BRCA1/2 wild-type ovarian cancer cells, whereas noncanonical Wnt/β-catenin signaling was preferentially activated in the BRCA1-null ovarian cancer cells. Interestingly, BRCA2-null mouse ovarian cancer cells demonstrated a unique response to Wnt3A with the preferential upregulation of the Wnt signaling inhibitor Axin2. In addition, decreased phosphorylation and enhanced stability of β-catenin were observed in BRCA2-null mouse ovarian cancer cells, which correlated with increased inhibitory phosphorylation on GSK3β. These findings open venues for the translation of these molecular observations into modalities that can impact patient survival.SignificanceWe show that BRCA1 and BRCA2 mutation statuses differentially impact the regulation of the Wnt/β-catenin signaling pathway, a major effector of cancer initiation and progression. Our findings provide a better understanding of molecular mechanisms that promote the known differential clinical profile in these patient populations.
Project description:Long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) is an intergenic long non-coding RNA (lncRNA) previously shown to contribute to tumorigenesis in several malignancies. However, little is known about whether linc-ROR has a role in ovarian cancer progression. In this study, we found that linc-ROR expression was increased in high-grade ovarian serous cancer tissues compared with normal ovarian tissues or normal fallopian tube tissues. Furthermore, the level of linc-ROR expression was associated with ovarian cancer International Federation of Gynecology and Obstetrics stage and lymph node metastasis. Linc-ROR promoted ovarian cancer cell proliferation both in vitro and in vivo, and contributed to cell migration and invasion. Linc-ROR knockdown in ovarian cancer cell lines inhibited the epithelial-to-mesenchymal transition (EMT) program, which led to ovarian cancer cell metastasis through the repression of canonical Wnt/β-catenin signaling. Together, our results indicated that linc-ROR induces EMT in ovarian cancer cells and may be an important molecule in the invasion and metastasis of ovarian cancer.
Project description:Inorganic pyrophosphatase (PPA1) activity is a key determinant of cellular inorganic pyrophosphate levels, and its expression is correlated with growth of several solid tumors. To investigate this relationship, we first examined PPA1 expression in human epithelial ovarian cancer (EOC) samples, and found that PPA1 was overexpressed in tumors from EOC patients. Higher PPA1 levels correlated with advanced grades, stages, and poor survival in EOC patients. Examination of PPA1 function in EOC revealed that silencing PPA1 inhibited EOC migration, epithelial-mesenchymal transition (EMT), and metastasis in vitro and in vivo. In addition, PPA1 may promote the dephosphorylation and translocation of β-catenin. These results demonstrate that silencing PPA1 inhibits EOC metastasis by suppressing the Wnt/β-catenin signaling pathway. Strategies for downregulating PPA1 may have therapeutic potential for the prevention and treatment of EOC.
Project description:Ovarian cancer is the fifth largest cancer killer in women. Improved understanding of the molecular pathways implicated in the pathogenesis of ovarian cancer has led to the investigation of novel targeted therapies. Ovarian cancer is characterized by an imbalance between pro- and antiangiogenic factors in favor of angiogenesis activation. Various antivascular strategies are currently under investigation in ovarian cancer. They can schematically be divided into antiangiogenic and vascular-disrupting therapies. This paper provides a comprehensive review of these new treatments targeting the tumor vasculature in this disease. Promising activities have been detected in phase II trials, and results of phase III clinical trials are awaited eagerly.
Project description:BackgroundEnolase-1, primarily known for its role in glucose metabolism, is overexpressed in various cancer entities. In contrast its alternative spliced nuclear isoform MBP-1 acts as a tumor suppressor. The aim of this study is to analyze the prognostic impact of Enolase-1/ MBP-1 and its functional significance in epithelial ovarian cancer (EOC).MethodsBy immunohistochemistry, Enolase-1 staining was examined in 156 EOC samples. Evaluation of Enolase-1 staining was conducted in the nucleus and the cytoplasm using the semi-quantitative immunoreactive score. Expression levels were correlated with clinical and pathological parameters as well as with overall survival to assess for prognostic impact.ResultsCytoplasmic and nuclear Enolase-1 expression did not show a significant difference between the histological subtypes (p = 0.1). High nuclear Enolase-1/ MBP-1 staining negativly correlated with the tumor grading (p<0.001; Cc= -0.318). Cytoplasmic Enolase-1 did not correlate with clinicopathological data. Higher nuclear Enolase-1/ MBP-1 staining was detected in low-grade serous cancer cases compared to high-grade ones (median IRS 3 (range 0-8) vs. median IRS 2 (range 0-4), p<0.001). Nuclear Enolase-1/ MBP-1 expression correlated with the Wnt signaling markers membranous beta-catenin (p = 0.007; Cc=0.235), serine residue 9-phosphorylated glycogen synthase kinase 3 beta (p<0.001; Cc=0.341) and snail/slug (p = 0.004; Cc= -0.257). High nuclear Enolase-1/ MBP-1 expression was associated with improved overall survival (88.6 vs. 33.1 months, median; p = 0.013).ConclusionAdditional knowledge of Enolase-1/ MBP-1 as a biomarker and its interactions within the Wnt signaling pathway and epithelial-mesenchymal transition potentially improve the prognosis of therapeutic approaches in EOC.
Project description:Epithelial ovarian cancer (EOC) has one of the highest death to incidence ratios among all cancers. High grade serous ovarian carcinoma (HGSOC) is the most common and deadliest EOC histotype due to the lack of therapeutic options following debulking surgery and platinum/taxane-based chemotherapies. For recurrent chemosensitive HGSOC, poly(ADP)-ribose polymerase inhibitors (PARPi; olaparib, rucaparib, or niraparib) represent an emerging treatment strategy. While PARPi are most effective in homologous recombination DNA repair-deficient (HRD) HGSOCs, recent studies have observed a significant benefit in non-HRD HGSOCs. However, all HGSOC patients are likely to acquire resistance. Therefore, there is an urgent clinical need to understand PARPi resistance and to introduce novel combinatorial therapies to manage PARPi resistance and extend HGSOC disease-free intervals. In a panel of HGSOC cell lines, we established matched olaparib sensitive and resistant cells. Transcriptome analysis of the matched olaparib-sensitive vs -resistant cells revealed activation of the Wnt signaling pathway and consequently increased TCF transcriptional activity in PARPi-resistant cells. Forced activation of canonical Wnt signaling in several PARPi-sensitive cells via WNT3A reduced olaparib and rucaparib sensitivity. PARPi resistant cells were sensitive to inhibition of Wnt signaling using the FDA-approved compound, pyrvinium pamoate, which has been shown to promote downregulation of β-catenin. In both an HGSOC cell line and a patient-derived xenograft model, we observed that combining pyrvinium pamoate with olaparib resulted in a significant decrease in tumor burden. This study demonstrates that Wnt signaling can mediate PARPi resistance in HGSOC and provides a clinical rationale for combining PARP and Wnt inhibitors.
Project description:Epithelial ovarian cancer (EOC) is the leading cause of cancer death all over the world. USP43 functions as a tumor promoter in various malignant cancers. Nevertheless, the biological roles and mechanisms of USP43 in EOC remain unknown. In this study, USP43 was highly expressed in EOC tissues and cells, and high expression of USP43 were associated with a poor prognosis of EOC. USP43 overexpression promoted EOC cell proliferation, enhanced the ability of migration and invasion, decreased cisplatin sensitivity and inhibited apoptosis. Knockdown of USP43 in vitro effectively retarded above malignant progression of EOC. In vivo xenograft tumors, silencing USP43 slowed tumor growth and enhanced cisplatin sensitivity. Mechanistically, USP43 inhibited HDAC2 degradation and enhanced HDAC2 protein stability through its deubiquitylation function. USP43 diminished the sensitivity of EOC cells to cisplatin through activation of the Wnt/β-catenin signaling pathway mediated by HDAC2. Taken together, the data in this study revealed the functions of USP43 in proliferation, migration, invasion, chemoresistance of EOC cells, and the mechanism of HDAC2-mediated Wnt/β-catenin signaling pathway. Thus, USP43 might serve as a potential target for the control of ovarian cancer progression.
Project description:We hereby engineered photoactivatable Pt(IV) metallodrugs that harness CD36 to target ovarian cancer cells. Pt(IV) compounds mimic the structure of fatty acids and take advantage of CD36 as a "Trojan horse" to gain entry into the cells. We confirmed that CD36-dependent entry occurs using graphite furnace atomic absorption spectroscopy with ovarian cancer cells expressing different levels of CD36 and a CD36 inhibitor, SSO. Once the Pt(IV) metallodrugs enter the cancer cells, they can be activated to form Pt(II) with characteristics of cisplatin under visible light (490 nm) irradiation, promoting photoinduced electron transfer from the attached fluorophore to the metal center. This light-induced activation can increase the cytotoxicity of the Pt(IV) metallodrugs by up to 20 times toward ovarian cancer cells, inducing DNA damage and enabling efficient elimination of drug-resistant cancer cells.