Unknown

Dataset Information

0

Single-cell transcriptomic atlas of primate cardiopulmonary aging.


ABSTRACT: Aging is a major risk factor for many diseases, especially in highly prevalent cardiopulmonary comorbidities and infectious diseases including Coronavirus Disease 2019 (COVID-19). Resolving cellular and molecular mechanisms associated with aging in higher mammals is therefore urgently needed. Here, we created young and old non-human primate single-nucleus/cell transcriptomic atlases of lung, heart and artery, the top tissues targeted by SARS-CoV-2. Analysis of cell type-specific aging-associated transcriptional changes revealed increased systemic inflammation and compromised virus defense as a hallmark of cardiopulmonary aging. With age, expression of the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) was increased in the pulmonary alveolar epithelial barrier, cardiomyocytes, and vascular endothelial cells. We found that interleukin 7 (IL7) accumulated in aged cardiopulmonary tissues and induced ACE2 expression in human vascular endothelial cells in an NF-?B-dependent manner. Furthermore, treatment with vitamin C blocked IL7-induced ACE2 expression. Altogether, our findings depict the first transcriptomic atlas of the aged primate cardiopulmonary system and provide vital insights into age-linked susceptibility to SARS-CoV-2, suggesting that geroprotective strategies may reduce COVID-19 severity in the elderly.

SUBMITTER: Ma S 

PROVIDER: S-EPMC7483052 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


Aging is a major risk factor for many diseases, especially in highly prevalent cardiopulmonary comorbidities and infectious diseases including Coronavirus Disease 2019 (COVID-19). Resolving cellular and molecular mechanisms associated with aging in higher mammals is therefore urgently needed. Here, we created young and old non-human primate single-nucleus/cell transcriptomic atlases of lung, heart and artery, the top tissues targeted by SARS-CoV-2. Analysis of cell type-specific aging-associated  ...[more]

Similar Datasets

2020-01-28 | GSE130664 | GEO
| S-EPMC7200799 | biostudies-literature
2020-06-11 | GSE120180 | GEO
| PRJNA540933 | ENA
| S-EPMC8403220 | biostudies-literature
| PRJNA491895 | ENA
| S-EPMC8563949 | biostudies-literature
| S-EPMC6530069 | biostudies-literature
| S-EPMC6086935 | biostudies-literature
| S-EPMC8240505 | biostudies-literature