Project description:An external quality assessment (EQA) program for the molecular detection of avian influenza A (H7N9) virus was implemented by the National Center for Clinical Laboratories (NCCL) of China in June 2013. Virus-like particles (VLPs) that contained full-length RNA sequences of the hemagglutinin (HA), neuraminidase (NA), matrix protein (MP), and nucleoprotein (NP) genes from the H7N9 virus (armored RNAs) were constructed. The EQA panel, comprising 6 samples with different concentrations of armored RNAs positive for H7N9 viruses and four H7N9-negative samples (including one sample positive for only the MP gene of the H7N9 virus), was distributed to 79 laboratories in China that carry out the molecular detection of H7N9 viruses. The overall performances of the data sets were classified according to the results for the H7 and N9 genes. Consequently, we received 80 data sets (one participating group provided two sets of results) which were generated using commercial (n = 60) or in-house (n = 17) reverse transcription-quantitative PCR (qRT-PCR) kits and a commercial assay that employed isothermal amplification method (n = 3). The results revealed that the majority (82.5%) of the data sets correctly identified the H7N9 virus, while 17.5% of the data sets needed improvements in their diagnostic capabilities. These "improvable" data sets were derived mostly from false-negative results for the N9 gene at relatively low concentrations. The false-negative rate was 5.6%, and the false-positive rate was 0.6%. In addition, we observed varied diagnostic capabilities between the different commercially available kits and the in-house-developed assays, with the assay manufactured by BioPerfectus Technologies (Jiangsu, China) performing better than the others. Overall, the majority of laboratories have reliable diagnostic capacities for the detection of H7N9 virus.
Project description:We have improved the new protocol for ChIP-chip by using pooling method. The new method has produced reproducible binding patterns and low background signals. We have performed and compared three methods for ChIP-chip samples: LMPCR, 10 Pooled Samples and WGA.
Project description:To investigate the virological properties of a SARS-CoV-2 variant, Omicron BA.2, we generated chimeric recombinant viruses that express GFP and encodes the S gene of B.1.1 (ancestral D614G-bearing virus), Delta, BA.1 and BA.2. To verify the genome sequence of the working viruses, we performed viral RNA-sequencing of the viral stock.
Project description:We have improved the new protocol for ChIP-chip by using pooling method. The new method has produced reproducible binding patterns and low background signals. Keywords: ChIP-chip
Project description:In recent years, nucleic acid tests for detection of measles virus RNA have been widely applied in laboratories belonging to the measles surveillance system of China. An external quality assessment program was established by the National Center for Clinical Laboratories to evaluate the performance of nucleic acid tests for measles virus. The external quality assessment panel, which consisted of 10 specimens, was prepared using armored RNAs, complex of noninfectious MS2 bacteriophage coat proteins encapsulated RNA of measles virus, as measles virus surrogate controls. Conserved sequences amplified from a circulating measles virus strain or from a vaccine strain were encapsulated into these armored RNAs. Forty-one participating laboratories from 15 provinces, municipalities, or autonomous regions that currently conduct molecular detection of measles virus enrolled in the external quality assessment program, including 40 measles surveillance system laboratories and one diagnostic reagent manufacturer. Forty laboratories used commercial reverse transcription-quantitative PCR kits, with only one laboratory applying a conventional PCR method developed in-house. The results indicated that most of the participants (38/41, 92.7%) were able to accurately detect the panel with 100% sensitivity and 100% specificity. Although a wide range of commercially available kits for nucleic acid extraction and reverse transcription polymerase chain reaction were used by the participants, only two false-negative results and one false-positive result were generated; these were generated by three separate laboratories. Both false-negative results were obtained with tests performed on specimens with the lowest concentration (1.2 × 104 genomic equivalents/mL). In addition, all 18 participants from Beijing achieved 100% sensitivity and 100% specificity. Overall, we conclude that the majority of the laboratories evaluated have reliable diagnostic capacities for the detection of measles virus.
Project description:Precision-cut tissue slices are an important in vitro system to study organ function because they preserve most of the native cellular microenvironments of organs, including complex intercellular connections. However, during sample manipulation or slicing, some of the natural surface topology and structure of these tissues is lost or damaged. Here, we introduce a microfluidic platform to perform multiple assays on the surface of a tissue section, unhindered by surface topography. The device consists of a valve on one side and eight open microchannels located on the opposite side, with the tissue section sandwiched between these two structures. When the valve is actuated, eight independent microfluidic channels are formed over a tissue section. This strategy prevents cross-contamination when performing assays and enables parallelization. Using irregular tissues such as an aorta, we conducted multiple in vitro and ex vivo assays on tissue sections, including short-term culturing, a drug toxicity assay, a fluorescence immunohistochemistry staining assay, and an immune cell assay, in which we observed the interaction of neutrophils with lipopolysaccharide (LPS)-stimulated endothelium. Our microfluidic platform can be employed in other disciplines, such as tissue physiology and pathophysiology, morphogenesis, drug toxicity and efficiency, metabolism studies, and diagnostics, enabling the conduction of several assays with a single biopsy sample.
Project description:Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay.The PVL quantification procedure was optimized by inclusion of an exogenous control hepatitis C virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660, and the LTR region of SIVagmSAB were also optimized.Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV RNA in the same samples using the 'industry standard' method of branched-DNA (bDNA) signal amplification.Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs.
Project description:OBJECTIVES:To construct a one-plasmid expression system of the armored RNA containing long chimeric RNA by increasing the number and affinity of the pac site. METHODS:The plasmid pET-MS2-pac was constructed with one C-variant pac site, and then the plasmid pM-CR-2C containing 1,891-bp chimeric sequences and two C-variant pac sites was produced. Meanwhile, three plasmids (pM-CR-C, pM-CR-2W and pM-CR-W) were obtained as parallel controls with a different number and affinity of the pac site. Finally, the armored RNA was expressed and purified. RESULTS:The armored RNA with 1,891 bases target RNA was expressed successfully by the one-plasmid expression system with two C-variant pac sites, while for one pac site, no matter whether the affinity was changed or not, only the 1,200 bases target RNA was packaged. It was also found that the C-variant pac site could increase the expression efficiency of the armored RNA. The armored RNA with 1,891-bp exogenous RNA in our study showed the characterization of ribonuclease resistance and stability at different time points and temperature conditions. CONCLUSIONS:The armored RNA with 1,891 bases exogenous RNA was constructed and the expression system can be used as a platform for preparation of the armored RNA containing long RNA sequences.
Project description:OBJECTIVE:Severe acute respiratory syndrome (SARS) is a severe pulmonary infectious disease caused by a novel coronavirus. To develop an effective and specific medicine targeting the SARS-coronavirus (CoV), a chimeric DNA-RNA hammerhead ribozyme was designed and synthesized using a sequence homologous with the mouse hepatitis virus (MHV). METHOD:Chimeric DNA-RNA hammerhead ribozyme targeting MHV and SARS-CoV were designed and synthesized.To confirm its activity, in vitro cleavage reactions were performed with the synthesized ribozyme. Effects of the chimeric ribozyme were evaluated on multiplication of MHV. Effects of the chimeric ribozyme on expression of SARS-CoV were evaluated in cultured 3T3 cells. RESULT:The synthetic ribozyme cleaved the synthetic target MHV and SARS-CoV RNA into fragments of predicted length. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited multiplication of MHV in DBT cells by about 60%. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited the expression of SARS-CoV RNA in 3T3 cells transfected with the recombinant plasmid. The chimeric DNA-RNA ribozyme targeting SARS-CoV significantly inhibited MHV viral activity and expression of recombinant SARS RNA in vitro. CONCLUSION:These findings indicate that the synthetic chimeric DNA-RNA ribozyme could provide a feasible treatment for SARS.
Project description:Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers worldwide. However, the treatment of patients with HCC is particularly challenging. Long non-coding RNA maternally expressed gene 3 (MEG3) has been identified as a potential suppressor of several types of tumors, but the delivery of long RNA remains problematic, limiting its applications. In the present study, we designed a novel delivery system based on MS2 virus-like particles (VLPs) crosslinked with GE11 polypeptide. This vector was found to be fast, effective and safe for the targeted delivery of lncRNA MEG3 RNA to the epidermal growth factor receptor (EGFR)-positive HCC cell lines without the activation of EGFR downstream pathways, and significantly attenuated both in vitro and in vivo tumor cell growth. Our study also revealed that the targeted delivery was mainly dependent on clathrin-mediated endocytosis and MEG3 RNA suppresses tumor growth mainly via increasing the expression of p53 and its downstream gene GDF15, but decreasing the expression of MDM2. Thus, this vector is promising as a novel delivery system and may facilitate a new approach to lncRNA based cancer therapy.