Project description:In heart failure and type 2 diabetes mellitus (DM), the majority of patients have hypomagnesemia, and magnesium (Mg) supplementation has improved cardiac function and insulin resistance. Recently, we have shown that DM can cause cardiac diastolic dysfunction (DD). Therefore, we hypothesized that Mg supplementation would improve diastolic function in DM. High-fat diet-induced diabetic mouse hearts showed increased cardiac DD and hypertrophy. Mice with DM showed a significantly increased E/e' ratio (the ratio of transmitral Doppler early filling velocity [E] to tissue Doppler early diastolic mitral annular velocity [e']) in the echocardiogram, left ventricular end diastolic volume (LVEDV), incidence of DD, left ventricular posterior wall thickness in diastole (PWTd), and ratio of heart weight to tibia length (HW/TL) when compared with controls. DM mice also had hypomagnesemia. Ventricular cardiomyocytes isolated from DM mice exhibited decreased mitochondrial ATP production, a 1.7- ± 0.2-fold increase of mitochondrial ROS, depolarization of the mitochondrial membrane potential, and mitochondrial Ca2+ overload. Dietary Mg administration (50 mg/ml in the drinking water) for 6 weeks increased plasma Mg concentration and improved cardiac function. At the cellular level, Mg improved mitochondrial function with increased ATP, decreased mitochondrial ROS and Ca2+ overload, and repolarized mitochondrial membrane potential. In conclusion, Mg supplementation improved mitochondrial function, reduced oxidative stress, and prevented DD in DM.
Project description:BackgroundPrevious trials of prenatal iron supplementation had limited measures of maternal or neonatal iron status.ObjectiveThe purpose was to assess effects of prenatal iron-folate supplementation on maternal and neonatal iron status.MethodsEnrollment occurred June 2009 through December 2011 in Hebei, China. Women with uncomplicated singleton pregnancies at ≤20 wk gestation, aged ≥18 y, and with hemoglobin ≥100 g/L were randomly assigned 1:1 to receive daily iron (300 mg ferrous sulfate) or placebo + 0.40 mg folate from enrollment to birth. Iron status was assessed in maternal venous blood (at enrollment and at or near term) and cord blood. Primary outcomes were as follows: 1) maternal iron deficiency (ID) defined in 2 ways as serum ferritin (SF) <15 μg/L and body iron (BI) <0 mg/kg; 2) maternal ID anemia [ID + anemia (IDA); hemoglobin <110 g/L]; and 3) neonatal ID (cord blood ferritin <75 μg/L or zinc protoporphyrin/heme >118 μmol/mol).ResultsA total of 2371 women were randomly assigned, with outcomes for 1632 women or neonates (809 placebo/folate, 823 iron/folate; 1579 mother-newborn pairs, 37 mothers, 16 neonates). Most infants (97%) were born at term. At or near term, maternal hemoglobin was significantly higher (+5.56 g/L) for iron vs. placebo groups. Anemia risk was reduced (RR: 0.53; 95% CI: 0.43, 0.66), as were risks of ID (RR: 0.74; 95% CI: 0.69, 0.79 by SF; RR: 0.65; 95% CI: 0.59, 0.71 by BI) and IDA (RR: 0.49; 95% CI: 0.38, 0.62 by SF; RR: 0.51; 95% CI: 0.40, 0.65 by BI). Most women still had ID (66.8% by SF, 54.7% by BI). Adverse effects, all minor, were similar by group. There were no differences in cord blood iron measures; >45% of neonates in each group had ID. However, dose-response analyses showed higher cord SF with more maternal iron capsules reported being consumed (β per 10 capsules = 2.60, P < 0.05).ConclusionsPrenatal iron supplementation reduced anemia, ID, and IDA in pregnant women in rural China, but most women and >45% of neonates had ID, regardless of supplementation. This trial was registered at clinicaltrials.gov as NCT02221752.
Project description:BackgroundHeart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counterregulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ coreceptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3, and, furthermore, that neutralizing endoglin activity promotes BMP9 activity.MethodsWe examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We used the transverse aortic constriction-induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling.ResultsBMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and a small interfering RNA approach. In BMP9-/- mice subjected to transverse aortic constriction, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to transverse aortic constriction with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 in comparison with vehicle-treated controls. Because endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to transverse aortic constriction-induced heart failure limits collagen production, increases BMP9 protein levels, and increases levels of pSmad1, not pSmad3.ConclusionsOur results identify a novel functional role for BMP9 as an endogenous inhibitor of cardiac fibrosis attributable to LV pressure overload and further show that treatment with either recombinant BMP9 or disruption of endoglin activity promotes BMP9 activity and limits cardiac fibrosis in heart failure, thereby providing potentially novel therapeutic approaches for patients with heart failure.
Project description:BackgroundIron facilitates key biological functions underpinning sports performance, and up to 60% of female athletes experience iron deficiency. However, the effects of iron deficiency on sports performance in female athletes is unclear, as are the degree of benefits of iron supplementation (FeSup). This study characterizes the effects of iron deficiency and FeSup on sports performance in high-level female athletes.MethodsSearches of the electronic databases MEDLINE, SPORTDiscus, Web of Science, Scopus, and CINAHL were performed in July 2023. Studies were included that evaluated the effects of iron deficiency or FeSup on sports performance in high-level (maximal oxygen uptake (VO2max) > 45 mL/kg/min, or trained > 5 h/week) iron deficient (ID) (serum ferritin (sFer) < 40 µg/L) female athletes. Studies were assessed using a modified Downs and Black Quality Assessment Checklist.ResultsA total of 23 studies comprising 669 athletes (age range: 13-47 years) across 16 sports were included in the review. Iron deficiency negatively affects endurance performance by 3%-4%. However, endurance performance improved by 2%-20% when ID athletes were treated with 100 mg/day of elemental iron for up to 56 days via oral supplementation, or bi-daily via parenteral administration over 8-10 days. ID non-anemic athletes with low sFer stores may be predisposed to reduced maximal aerobic capacity. However, maximal aerobic capacity improved by 6%-15% following 16 mg/day-100 mg/day of elemental iron for 36-126 days. Isokinetic strength and anaerobic power performance may be impeded (-23% to +4%) among ID athletes, but the effect of FeSup on anaerobic power varied markedly (-5% to +9%) following 100 mg/day of elemental iron over 42-56 days, or 100 mg of elemental iron bi-daily over 8-10 days. The quality of studies was moderate (77%), ranging from low (57%) to high (100%). Moststudies (n = 18) contained group sizes ≤ 20 athletes, thus limiting the likelihood of detecting significant effects (statistical power > 0.80).ConclusionHigh-level ID female athletes experience a negative impact on endurance performance, which can be improved by supplementing with ∼100 mg of elemental iron per day or bi-daily. The decrements in other performance parameters characterizing a range of sports coincide with the severity of iron deficiency.
Project description:BackgroundAbout 30% of women entering pregnancy in the US are obese. We have previously reported mitochondrial dysregulation and increased inflammation in the placentae of obese women. Vitamin D (VitD) is a major player in calcium uptake and was shown to modulate mitochondrial respiration and the immune/inflammation system. Studies show decreased VitD levels in obese individuals; however, the effect of maternal obesity on VitD metabolism and its association with placental function remains understudied.MethodsMaternal and cord blood plasma and placental samples were collected upon C-section from normal-weight (NW, body mass index [BMI]<25) and obese (OB, BMI>30) women with uncomplicated pregnancies at term. We measured 25(OH)D3 (calcidiol) levels in maternal and cord blood plasma using ELISA. We assessed the expression of CYP27B1, an activator of calcidiol, and Vitamin D receptor (VDR) in placentae from NW and OB, and women with gestational diabetes and preeclampsia. In addition, we examined the effects of VitD supplementation on mitochondrial function and inflammation in trophoblasts from NW and OB, using the Seahorse Bioanalyzer and Western blot, respectively.ResultsVitamin D levels in blood from OB but not NW women and in cord blood from babies born to NW and OB women showed a significant inverse correlation with maternal pre-pregnancy BMI (r=-0.50, p<0.1 and r=-0.55, p=0.004 respectively). Cord plasma VitD levels showed a positive correlation with placental efficiency, i.e., the ratio between fetal and placental weight, as well as with maternal blood VitD levels (r=0.69 and 0.83 respectively, p<0.00). While we found no changes in CYP27B1 in OB vs. NW women, VDR expression were decreased by 50% (p<0.03) independent of fetal sex. No changes in VDR expression relative to BMI-matched controls were observed in the placentae of women with gestational diabetes or preeclampsia. Cytotrophoblasts isolated from placentae of OB women showed a dose-dependent increase in VDR expression after 24-hour treatment with calcitriol (10 nM and 100 nM), an active form of VitD. Trophoblasts isolated from OB women and treated with calcitriol improved mitochondrial respiration (p<0.05). We also found a two-fold increase in expression of the NLRP3 inflammasome and the pro-inflammatory cytokine IL-18 in trophoblasts isolated from placentae of OB women (p<0.05), with IL-18 expression being reversed by calcitriol treatment (100 nM).ConclusionsWe show that VitD deficiency is at least partially responsible for mitochondrial dysfunction and increased inflammation in the placentae of obese women. Vitamin D supplementation could be beneficial in improving placental dysfunction seen in obese women.
Project description:Iron deficiency is present in ~50% of heart failure (HF) patients. Large multicenter trials have shown that treatment of iron deficiency with i.v. iron benefits HF patients, but the underlying mechanisms are not known. To investigate the actions of iron deficiency on the heart, mice were fed an iron-depleted diet, and some received i.v. ferric carboxymaltose (FCM), an iron supplementation used clinically. Iron-deficient animals became anemic and had reduced ventricular ejection fraction measured by magnetic resonance imaging. Ca2+ signaling, a pathway linked to the contractile deficit in failing hearts, was also significantly affected. Ventricular myocytes isolated from iron-deficient animals produced smaller Ca2+ transients from an elevated diastolic baseline but had unchanged sarcoplasmic reticulum (SR) Ca2+ load, trigger L-type Ca2+ current, or cytoplasmic Ca2+ buffering. Reduced fractional release from the SR was due to downregulated RyR2 channels, detected at protein and message levels. The constancy of diastolic SR Ca2+ load is explained by reduced RyR2 permeability in combination with right-shifted SERCA activity due to dephosphorylation of its regulator phospholamban. Supplementing iron levels with FCM restored normal Ca2+ signaling and ejection fraction. Thus, 2 Ca2+-handling proteins previously implicated in HF become functionally impaired in iron-deficiency anemia, but their activity is rescued by i.v. iron supplementation.
Project description:We evaluated the dietary effects of multiple probiotics in Jeju native pigs, using basal diet and multi-probiotic Lactobacillus (basal diet with 1% multi-probiotics) treatments (n = 9 each) for 3 months. We analyzed growth performance, feed efficiency, backfat thickness, blood parameters, hematological profiles, adipokines, and immune-related cytokines in pig tissues. Average daily gain, feed intake, feed efficiency, backfat thickness, and body weight were not significantly different between both groups. In Lactobacillus group, total protein (p < 0.08) and bilirubin (p < 0.03) concentrations increased; blood urea nitrogen (p < 0.08), alkaline phosphatase (p < 0.08), and gamma-glutamyltransferase (p < 0.08) activities decreased. Lactobacillus group showed decreased adiponectin (p < 0.05), chemerin (p < 0.05), and visfatin expression in adipose tissues, and increased TLR4 (p < 0.05), MYD88 (p < 0.05), TNF-α (p < 0.001), and IFN-γ (p < 0.001) expression in the liver. Additionally, NOD1 (p < 0.05), NOD2 (p < 0.01), and MYD88 (p < 0.05) mRNA levels in proximal colon tissue upregulated significantly. Colon, longissimus dorsi muscle, fat tissue, and liver histological analyses revealed no significant differences between the groups. Conclusively, Lactobacillus supplementation improved liver function and reduced cholesterol levels. Its application may treat metabolic liver disorders, especially cholesterol-related disorders.
Project description:Iron deficiency in the human body is a global issue with an impact on more than two billion individuals worldwide. The most important functions ensured by adequate amounts of iron in the body are related to transport and storage of oxygen, electron transfer, mediation of oxidation-reduction reactions, synthesis of hormones, the replication of DNA, cell cycle restoration and control, fixation of nitrogen, and antioxidant effects. In the case of iron deficiency, even marginal insufficiencies may impair the proper functionality of the human body. On the other hand, an excess in iron concentration has a major impact on the gut microbiota composition. There are several non-genetic causes that lead to iron deficiencies, and thus, several approaches in their treatment. The most common methods are related to food fortifications and supplements. In this review, following a summary of iron metabolism and its health implications, we analyzed the scientific literature for the influence of iron fortification and supplementation on the gut microbiome and the effect of probiotics, prebiotics, and/or synbiotics in iron absorption and availability for the organism.
Project description:BackgroundThe effectiveness of oral and intravenous iron supplementation in reducing the risk of mortality and hospitalizations in HF patients with iron deficiency is not well-established.MethodsA thorough literature search was conducted across 2 electronic databases (Medline and Cochrane Central) from inception through March 2021. RCTs assessing the impact of iron supplementation on clinical outcomes in iron deficient HF patients were considered for inclusion. Primary end-points included all-cause mortality and HF hospitalization. Evaluations were reported as odds ratios (ORs) or risk ratios (RRs) with 95% confidence intervals (CI) and analysis was performed using a random effects model. I2 index was used to assess heterogeneity.ResultsFrom the 2599 articles retrieved from initial search, 10 potentially relevant studies (n = 2187 patients) were included in the final analysis. Both oral (OR: 0.93; 95% CI: 0.08-11.30; p = 0.951) and intravenous (OR: 0.97; 95% CI: 0.73-1.29; p = 0.840) iron supplementation did not significantly reduce all-cause mortality. However, intravenous iron supplementation significantly decreased the rates of overall (OR: 0.52; 95% CI: 0.33-0.81; p = 0.004) and HF (OR: 0.42; 95% CI: 0.22-0.80; p = 0.009) hospitalizations. In addition, intravenous ferric carboxymaltose therapy significantly reduced the time to first HF hospitalization or cardiovascular mortality (RR = 0.70; 95% CI = 0.50-1.00; p = 0.048), but had no effect on time to first cardiovascular death (RR: 0.94; 95% CI: 0.70-1.25; p = 0.655).ConclusionOral or intravenous iron supplementation did not reduce mortality in iron deficient HF patients. However, intravenous iron supplementation was associated with a significant decrease in overall and HF hospitalizations.
Project description:Inhibition of complement factor 5 (C5) reduced myocardial infarction in animal studies, while no benefit was found in clinical studies. Due to lack of cross-reactivity of clinically used C5 antibodies, different inhibitors were used in animal and clinical studies. Coversin (Ornithodoros moubata complement inhibitor, OmCI) blocks C5 cleavage and binds leukotriene B4 in humans and pigs. We hypothesized that inhibition of C5 before reperfusion will decrease infarct size and improve ventricular function in a porcine model of myocardial infarction. In pigs (Sus scrofa), the left anterior descending coronary artery was occluded (40 min) and reperfused (240 min). Coversin or placebo was infused 20 min after occlusion and throughout reperfusion in 16 blindly randomized pigs. Coversin significantly reduced myocardial infarction in the area at risk by 39% (p = 0.03, triphenyl tetrazolium chloride staining) and by 19% (p = 0.02) using magnetic resonance imaging. The methods correlated significantly (R = 0.92, p < 0.01). Tissue Doppler echocardiography showed increased systolic displacement (31%, p < 0.01) and increased systolic velocity (29%, p = 0.01) in coversin treated pigs. Interleukin-1β in myocardial microdialysis fluid was significantly reduced (31%, p < 0.05) and tissue E-selectin expression was significantly reduced (p = 0.01) in the non-infarcted area at risk by coversin treatment. Coversin ablated plasma C5 activation throughout the reperfusion period and decreased myocardial C5b-9 deposition, while neither plasma nor myocardial LTB4 were significantly reduced. Coversin substantially reduced the size of infarction, improved ventricular function, and attenuated interleukin-1β and E-selectin in this porcine model by inhibiting C5. We conclude that inhibition of C5 in myocardial infarction should be reconsidered.