Project description:When fabricating Si-based devices, many process steps require the use of expensive, high-power consumption, environmentally unfriendly, operator-unsafe machines, and processes. Among the many involved process steps, the ones needed to fabricate the metallurgical junction make use of conventional doping methods, which do not always represent optimal solutions. The high costs of the processing equipment and the use of hazardous materials, not to count the structural damage produced, intrinsically limit future developments towards nm-scaled and low cost approaches. Recently a chemistry-based method has been proposed to form the junction on Si, the so-called molecular doping. In this approach, the samples to be doped are subjected to a silylation process, during which a layer of dopant-containing molecules is deposited in a liquid bath kept at boiling temperature. After the coating, the samples are annealed to decompose the molecule and release the dopants inside the target. The peculiarity of using a liquid source allows for avoiding the structural damage. The entire doping procedure is simple and cost-effective, and it is based on the use of ester molecules, which are less harmful than the standard materials. In this work, we present experimental results on this chemistry-based technique, demonstrating its efficiency in creating the junction and demonstrate its feasibility in the fabrication of solar cells prototypes. Moreover, with respect to the literature, we show for the first time the effects of the protective layer presence over the dopant source molecules in the final solar cells electrical properties. As a proof of concept, we have numerically investigated the Si-based solar cell using the SCPAS-1D simulator. The finding claims that, the proposed samples have a good match in terms of the performance of the devices compared to the conventional Si-solar cells. Henceforth, the proposed work can provide a guideline to achieve less expensive, more environmentally friendly techniques for molecular doping in Si without affecting its performance in the metallurgical junction.
Project description:Key messageIn-house production of a positive selection cloning vector could be simple, efficient and low cost.AbstractDNA cloning technology requires a vector to harbour a gene of interest for multiplication of the gene in bacterial cells. Positive selection vector has become a popular type of cloning vector due to the simplicity and efficiency of the positive selection system. Due to the presence of a toxic gene, propagation of a commercial positive selection vector in common laboratory E. coli strains is infeasible. This study demonstrated a strategy for propagation and in-house production of a commercial positive selection vector, i.e., pJET1.2/blunt cloning vector, at low cost. This was done by insertion of a specially designed DNA fragment (MCS fragment), which can be easily removed later by EcoRV digestion, into the pJET1.2/blunt cloning vector to allow the propagation of the modified plasmid (termed pJET1.2M) in common E. coli strains. Removal of the MCS fragment from the pJET1.2M plasmid produces the pJET1.2/blunt cloning vector ready for gene cloning. The self-made pJET1.2/blunt cloning vector exhibited a cloning efficiency of 100%.Supplementary informationThe online version contains supplementary material available at 10.1007/s13205-022-03289-x.
Project description:BackgroundThe detection of Angiostrongylus spp. larvae in intermediate host snails is a critical epidemiological investigation, essential for the effective control of disease outbreaks. Compared to molecular biological detection methods, lung microscopy, a traditional pathogen morphological detection approach, is susceptible to oversights and exhibits relatively lower sensitivity. However, we posit that lung microscopy offers irreplaceable advantages in the context of large-scale field surveys and can serve as a vital foundation for use in conjunction with other diagnostic technologies.MethodsIn this study, 348 Achatina fulica samples were examined using lung microscopy, PCR, and AcanITS1 qPCR. Statistical analysis was conducted to compare detection rates and sensitivities among these methods. DNA from a snail confirmed positive by lung microscopy was diluted and tested using PCR and AcanITS1 qPCR to assess the diagnostic efficacy of the molecular assays. Finally, we combined the highly sensitive AcanITS1 qPCR with lung microscopy for identifying Angiostrongylus spp. larvae in Achatina fulica for the first time to our knowledge and compared its diagnostic efficacy with that of individual testing methods.ResultsThe lung microscopy, PCR, AcanITS1 qPCR, and combined test yielded detection rates of 29.31%, 32.18%, 38.22%, and 38.51%, respectively. These differences were statistically significant (X2 = 9.565, p < 0.05). Notably, AcanITS1 qPCR demonstrated superior sensitivity with a detection threshold of 10 pg/μl, outperforming the PCR with a threshold of 10 ng/μl. When PCR was utilized as the gold standard, the sensitivities for lung microscopy, AcanITS1 qPCR, and the combined test were determined to be 88.39%, 97.32%, and 98.21%, respectively. Correspondingly, the specificities were 98.73%, 89.83%, and 89.83%, respectively.ConclusionsThis novel straregy, the combined test for the detection of Angiostrongylus spp. larvae in Achatina fulica exhibited superior positive detection rates and sensitivity compared to each of the three individual methods. We believe that this novel strategy is not only applicable to large-scale field investigations of Achatina fulica and Pomacea canaliculata but also has potential application value for monitoring the infection of these snails sold at the local farmers' markets with Angiostrongylus spp. larvae. Of course, while qPCR is exceptionally sensitive, the potential for false negatives remains a consideration. Repeated experimentation is also essential to maximize the reliability and accuracy of the outcomes.
Project description:BackgroundVector surveillance provides critical data for decision-making to ensure that malaria control programmes remain effective and responsive to any threats to a successful control and elimination programme. The quality and quantity of data collected is dependent on the sampling tools and laboratory techniques used which may lack the sensitivity required to collect relevant data for decision-making. Here, 40 vector control experts were interviewed to assess the benefits and limitations of the current vector surveillance tools and techniques. In addition, experts shared ideas on "blue sky" indicators which encompassed ideas for novel methods to monitor presently used indicators, or to measure novel vector behaviours not presently measured. Algorithms for deploying surveillance tools and priorities for understanding vector behaviours are also needed for collecting and interpreting vector data.ResultsThe available tools for sampling and analysing vectors are often hampered by high labour and resource requirements (human and supplies) coupled with high outlay and operating costs and variable tool performance across species and geographic regions. The next generation of surveillance tools needs to address the limitations of present tools by being more sensitive, specific and less costly to deploy to enable the collection and use of epidemiologically relevant vector data to facilitate more proactive vector control guidance. Ideas and attributes for Target Product Profiles (TPPs) generated from this analysis provide targets for research and funding to develop next generation tools.ConclusionsMore efficient surveillance tools and a more complete understanding of vector behaviours and populations will provide a basis for more cost effective and successful malaria control. Understanding the vectors' behaviours will allow interventions to be deployed that target vulnerabilities in vector behaviours and thus enable more effective control. Through defining the strengths and weaknesses of the current vector surveillance methods, a foundation and initial framework was provided to define the TPPs for the next generation of vector surveillance methods. The draft TTPs presented here aim to ensure that the next generation tools and technologies are not encumbered by the limitations of present surveillance methods and can be readily deployed in low resource settings.
Project description:One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.
Project description:BackgroundHigh-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently.ResultsWe developed the Annotation, Mapping, Expression and Network (AMEN) software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i) uploading and pre-processing data from microarray expression profiling experiments, (ii) detecting groups of significantly co-expressed genes, and (iii) searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human.ConclusionAMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.
Project description:Plants have been observed to produce short ultrasonic emissions (UEs), and current research is focusing on developing noninvasive techniques for recording and analyzing these emissions. A standardized methodology has not been established yet; in this paper we suggest a cost-effective procedure for recording, extracting, and identifying plant UEs using only a single ultrasound microphone, a laptop computer, and open-source software.