Unknown

Dataset Information

0

Lithium Hydroxide Hydrolysis Combined with MALDI TOF Mass Spectrometry for Rapid Sphingolipid Detection.


ABSTRACT: Sphingolipids have diverse structural and bioactive functions that play important roles in many key biological processes. Factors such as low relative abundance, varied structures, and a dynamic concentration range provide a difficult analytical challenge for sphingolipid detection. To further improve mass-spectrometry-based sphingolipid analysis, lithium adduct consolidation was implemented to decrease spectral complexity and combine signal intensities, leading to increased specificity and sensitivity. We report the use of lithium hydroxide as a base in a routine hydrolysis procedure in order to effectively remove common ionization suppressants (such as glycolipids and glycerophospholipids) and introduce a source of lithium into the sample. In conjunction, an optimized MALDI matrix system, featuring 2',4',6'-trihydroxyacetophenone (THAP) is used to facilitate lithium adduct consolidation during the MALDI process. The result is a robust and high-throughput sphingolipid detection scheme, particularly of low-abundance ceramides. Application of our developed workflow includes the detection of differentially expressed liver sphingolipid profiles from a high-fat-induced obesity mouse model. We also demonstrate the method's effectiveness in detecting various sphingolipids in brain and plasma matrices. These results were corroborated with data from UHPLC HR MS/MS and MALDI FT-ICR, verifying the efficacy of the method application. Overall, we demonstrate a high-throughput workflow for sphingolipid analysis in various biological matrices by the use of MALDI TOF and lithium adduct consolidation.

SUBMITTER: Tran A 

PROVIDER: S-EPMC7790884 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lithium Hydroxide Hydrolysis Combined with MALDI TOF Mass Spectrometry for Rapid Sphingolipid Detection.

Tran Anh A   Wan Liting L   Xu Zhenbo Z   Haro Janette M JM   Li Bing B   Jones Jace W JW  

Journal of the American Society for Mass Spectrometry 20201030 1


Sphingolipids have diverse structural and bioactive functions that play important roles in many key biological processes. Factors such as low relative abundance, varied structures, and a dynamic concentration range provide a difficult analytical challenge for sphingolipid detection. To further improve mass-spectrometry-based sphingolipid analysis, lithium adduct consolidation was implemented to decrease spectral complexity and combine signal intensities, leading to increased specificity and sens  ...[more]

Similar Datasets

| S-EPMC6296472 | biostudies-literature
| S-EPMC4022047 | biostudies-literature
| S-EPMC7069628 | biostudies-literature
| S-EPMC7278220 | biostudies-literature
| S-EPMC8623207 | biostudies-literature
| S-EPMC3922009 | biostudies-literature
| S-EPMC2553356 | biostudies-literature
| S-EPMC8283998 | biostudies-literature
| S-EPMC6524149 | biostudies-literature
| S-EPMC3592410 | biostudies-literature