Project description:Spondyloarthropathy (SpA) is a unique type of joint inflammation characterized by coexisting erosive bone damage and pathological new bone formation. Previous genetic association studies have demonstrated that several cytokine pathways play a critical role in the pathogenesis of ankylosing spondylitis (AS), psoriatic arthritis (PsA), and other types of SpA. In addition to several well-known proinflammatory cytokines, recent studies suggest that IL-17 plays a pivotal role in the pathogenesis of SpA. Further evidence from human and animal studies have defined that IL-17 and IL-17-producing cells contribute to tissue inflammation, autoimmunity, and host defense, leading to the following pathologic events associated with SpA. Recently, several clinical trials targeting IL-17 pathways demonstrated the positive response of IL-17 blockade in treating AS, indicating a great potential of IL-17-targeting therapy in SpA. In this review article, we have discussed the contributing role of IL-17 and different IL-17-producing cells in the pathogenesis of SpA and provided an outline of therapeutic application of the IL-17 blockade in the treatment of SpA. Other targeted cytokines associated with IL-17 axis in SpA will also be included.
Project description:ObjectiveN6-Methyladenosine (m6A) modification is of great importance in both the pathological conditions and physiological process. The m6A single nucleotide polymorphisms (SNPs) are associated with cardiovascular diseases including coronary artery disease, heart failure. However, it is unclear whether m6A-SNPs are involved in atrial fibrillation (AF). Here, we aimed to explore the relationship between m6A-SNPs and AF.MethodThe relationship between m6A-SNPs and AF was evaluated by analyzing the AF genome-wide association study (GWAS) and m6A-SNPs annotated by the m6AVar database. Further, eQTL and gene differential expression analysis were performed to confirm the association between these identified m6A-SNPs and their target genes in the development of AF. Moreover, we did the GO enrichment analysis to figure out the potential functions of these m6A-SNPs affected genes.ResultTotally, 105 m6A-SNPs were identified to be significantly associated with AF (FDR < 0.05), among which 7 showed significant eQTL signals on local genes in the atrial appendage. By using four public AF gene expression datasets, we identified genes SYNE2, USP36, and THAP9 containing SNPs rs35648226, rs900349, and rs1047564 were differentially expressed in AF population. Further, SNPs rs35648226 and rs1047564 are potentially associated with AF by affecting m6A modification and both of them might have an interaction with RNA-binding protein, PABPC1.ConclusionIn summary, we identified m6A-SNPs associated with AF. Our study provided new insights into AF development as well as AF therapeutic target.
Project description:Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia that leads to numerous adverse outcomes including stroke, heart failure, and death. Hyperuricemia is an important risk factor that contributes to atrium injury and AF, but the underlying molecular mechanism remains to be elucidated. In this review, we discussed the scientific evidence for clarifying the role of hyperuricemia in the pathogenesis of AF. Experimental and Clinical evidence endorse hyperuricemia as an independent risk factor for the incidence of AF. Various in vivo and in vitro investigations showed that hyperuricemia might play a critical role in the pathogenesis of AF at different UA concentrations through the activation of oxidative stress, inflammation, fibrosis, apoptosis, and immunity.
Project description:Acute cellular rejection of organ transplants is executed by donor-reactive T cells, which are dominated by interferon-gamma-producing cells. As interferon-gamma is dispensable for graft destruction, we evaluated the contribution of interleukin-17A (IL-17) to intragraft inflammation in major histocompatibility complex-mismatched heart transplants. A/J (H-2(a)) cardiac allografts placed into wild-type BALB/c (H-2(d)) mice induced intragraft IL-17 production on day 2 after transplant. Allografts placed into BALB/c IL-17(-/-) recipients demonstrated diminished production of the chemokines CXCL1 and CXCL2 and delayed neutrophil and T cell recruitment. However, by day 7 after transplant, allografts from IL-17(-/-) and wild-type recipients had comparable levels of cellular infiltration. The priming of donor-specific T cells was not affected by the absence of IL-17, and the kinetics of cardiac allograft rejection were similar in wild-type and IL-17(-/-) recipients. In contrast, IL-17(-/-) mice depleted of CD8 T cells rejected A/J allografts in a delayed fashion compared with CD8-depleted wild-type recipients. Although donor-reactive CD4 T cells were efficiently activated in both groups, the infiltration of effector T cells into allografts was impaired in IL-17(-/-) recipients. Our data indicate that locally produced IL-17 amplifies intragraft inflammation early after transplantation and promotes tissue injury by facilitating T cell recruitment into the graft. Targeting the IL-17 signaling network in conjunction with other graft-prolonging therapies may decrease this injury and improve the survival of transplanted organs.
Project description:Atrial fibrillation (AF) is the most frequent arrhythmia managed in clinical practice, and it is linked to an increased risk of death, stroke, and peripheral embolism. The Global Burden of Disease shows that the estimated prevalence of AF is up to 33.5 million patients. So far, successful therapeutic techniques have been implemented, with a high health-care cost burden. As a result, identifying modifiable risk factors for AF and suitable preventive measures may play a significant role in enhancing community health and lowering health-care system expenditures. Several mechanisms, including electrical and structural remodeling of atrial tissue, have been proposed to contribute to the development of AF. This review article discusses the predisposing factors in AF including the different pathogenic mechanisms, sedentary lifestyle, and dietary habits, as well as the potential genetic burden.
Project description:Inflammation is associated with the development of atrial fibrillation (AF). Activity in hematopoietic tissues, which produce inflammatory leukocytes, is closely related to systemic inflammation, arterial inflammation and cardiovascular events, but its relationship to AF is unknown. Using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging, we examined the relationships between AF, splenic metabolic activity and vascular inflammation. We conducted a cross sectional study of 70 participants: 35 with AF, who were matched (by age, sex and history of active cancer) to 35 controls without AF. Splenic metabolic activity and vascular aortic inflammation were measured by the mean FDG maximum standard uptake values (SUV Max) by PET. We examined (1) the association between AF and splenic activity, and (2) AF and aortic inflammation. The mean age of the population was 68.13 (standard deviation (SD) 8.98) years and 46 (65 %) participants were male. Splenic activity was higher in AF participants [2.31 (SD 0.45) vs. 2.07 (SD 0.37), p = 0.024], and remained significant after adjusting for demographic and clinical covariates. Aortic inflammation was also higher in AF participants [2.22 (SD 0.44) vs. 1.91 (SD 0.44), p = 0.004], and remained significant on multivariable analysis. Aortic inflammation and splenic activity were highly correlated (Pearson R = 0.61, p < 0.001). Atrial fibrillation is associated with higher hematopoietic tissue activation and arterial inflammation. Further studies are needed to clarify the mechanisms by which this cardio-splenic axis is implicated in AF.
Project description:Systemic sclerosis is characterized by widespread fibrosis of the skin and internal organs, vascular impairment, and dysregulation of innate and adaptive immune system. Growing evidence indicates that T-cell proliferation and cytokine secretion play a major role in the initiation of systemic sclerosis, but the role of T helper 17 cells and of interleukin-17 cytokines in the development and progression of the disease remains controversial. In particular, an equally distributed body of literature supports both pro-fibrotic and anti-fibrotic effects of interleukin-17, suggesting a complex and nuanced role of this cytokine in systemic sclerosis pathogenesis that may vary depending on disease stage, target cells in affected organs, and inflammatory milieu. Although interleukin-17 already represents an established therapeutic target for several immune-mediated inflammatory diseases, more robust experimental evidence is required to clarify whether it may become an attractive therapeutic target for systemic sclerosis as well.
Project description:ObjectiveMycobacterium tuberculosis and Cryptococcus neoformans are major causes of meningitis in HIV-1-infected patients. Identifying differences in the inflammatory profiles of HIV-1-associated tuberculous meningitis (TBM) and cryptococcal meningitis may inform differences in immunopathogenic mechanisms in these diseases. In this study we compared the clinical and inflammatory features of HIV-1-associated TBM, and cryptococcal meningitis.MethodsA prospective study of HIV-1-infected adults who presented with either TBM [antiretroviral therapy (ART)-naive] or cryptococcal meningitis (regardless of ART prescription). Clinical and laboratory findings and concentrations of 40 inflammatory mediators measured in cerebrospinal fluid (CSF, 33 paired with blood) were compared between TBM and cryptococcal meningitis patients regardless of ART prescription and between TBM and cryptococcal meningitis patients not receiving ART.ResultsClinical and laboratory findings were similar in TBM (n=34) and cryptococcal meningitis (n?=?19; ART prescribed: n?=?10, no ART prescribed: n?=?9). Exceptions included a higher median CD4 cell count [interquartile: 113 (69-199) vs. 25 (8-49) cells/?l, P?=?0.0001] and higher HIV-1 median viral load [plasma: 5.46 (4.82-5.89) vs. 4.87 (4.36-5.17) log10copies/ml, P?=?0.037; CSF: 6.05 (5.43-6.56) vs. 5.56 (4.52-5.80) log10copies/ml, P?=?0.03] in TBM vs. cryptococcal meningitis patients not receiving ART. CSF interleukin (IL)-17A was lower in TBM compared with cryptococcal meningitis [1.00 (0.25-2.35) vs. 9.31 (1.24-23.36) pg/ml, P-adjusted?=?0.03].ConclusionDespite presenting with higher peripheral CD4 cell counts, TBM patients also presented with higher HIV-1 viral loads compared with cryptococcal meningitis patients, suggesting a greater propensity of M. tuberculosis compared with C. neoformans to increase HIV-1 replication in vivo. CSF IL-17A was lower in TBM; its role in the immunopathogenesis of TBM and cryptococcal meningitis deserves further research.
Project description:BackgroundInflammation is closely related to atrial fibrillation (AF) pathogenesis, and interleukin-37 (IL-37) represents a new member of the anti-inflammatory cytokines.HypothesisIL-37 might play an important role in AF development and act as a potential risk factor for AF diagnosis.MethodsThe mRNA level of IL-37 in peripheral blood mononuclear cells (PBMCs) and serum IL-37 levels in AF patients and healthy controls were measured by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). PBMCs from AF patients were stimulated with recombinant IL-37. Levels of pro-inflammatory cytokines IL-6 and C-reactive protein were determined by RT-PCR and ELISA.ResultsIL-37 mRNAs and serum protein levels were higher in patients with AF or lone AF compared with healthy controls. Patients with paroxysmal AF or persistent AF showed higher IL-37 mRNAs and serum protein levels compared with those with permanent AF as well as healthy controls. In vitro, IL-37 inhibited the production of IL-6 and C-reactive protein in PBMCs of patients with AF.ConclusionsIL-37 is elevated in AF patients and its expression is closely associated with AF subgroups. Thus, IL-37 may provide a novel research target for the pathogenesis and therapy of AF. This study is the first to document elevated IL-37 in AF patients.