Unknown

Dataset Information

0

Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells.


ABSTRACT: Extracellular vesicles (EVs), including exosomes, are thought to mediate intercellular communication through the transfer of cargoes from donor to acceptor cells. Occurrence of EV-content delivery within acceptor cells has not been unambiguously demonstrated, let alone quantified, and remains debated. Here, we developed a cell-based assay in which EVs containing luciferase- or fluorescent-protein tagged cytosolic cargoes are loaded on unlabeled acceptor cells. Results from dose-responses, kinetics, and temperature-block experiments suggest that EV uptake is a low yield process (~1% spontaneous rate at 1 h). Further characterization of this limited EV uptake, through fractionation of membranes and cytosol, revealed cytosolic release (~30% of the uptaken EVs) in acceptor cells. This release is inhibited by bafilomycin A1 and overexpression of IFITM proteins, which prevent virus entry and fusion. Our results show that EV content release requires endosomal acidification and suggest the involvement of membrane fusion.

SUBMITTER: Bonsergent E 

PROVIDER: S-EPMC7994380 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells.

Bonsergent Emeline E   Grisard Eleonora E   Buchrieser Julian J   Schwartz Olivier O   Théry Clotilde C   Lavieu Grégory G   Lavieu Grégory G  

Nature communications 20210325 1


Extracellular vesicles (EVs), including exosomes, are thought to mediate intercellular communication through the transfer of cargoes from donor to acceptor cells. Occurrence of EV-content delivery within acceptor cells has not been unambiguously demonstrated, let alone quantified, and remains debated. Here, we developed a cell-based assay in which EVs containing luciferase- or fluorescent-protein tagged cytosolic cargoes are loaded on unlabeled acceptor cells. Results from dose-responses, kineti  ...[more]

Similar Datasets

| S-EPMC6296015 | biostudies-literature
| S-EPMC5084879 | biostudies-literature
| S-EPMC10192366 | biostudies-literature
| S-EPMC4122821 | biostudies-literature
2015-03-05 | E-GEOD-66488 | biostudies-arrayexpress
| S-EPMC5689128 | biostudies-literature
| S-EPMC11780574 | biostudies-literature
| S-EPMC7249041 | biostudies-literature
| S-EPMC8558170 | biostudies-literature
| S-EPMC10234250 | biostudies-literature