Unknown

Dataset Information

0

Interleukin-32θ Triggers Cellular Senescence and Reduces Sensitivity to Doxorubicin-Mediated Cytotoxicity in MDA-MB-231 Cells.


ABSTRACT: The recently discovered interleukin (IL)- 32 isoform IL-32θ exerts anti-metastatic effects in the breast tumor microenvironment. However, the involvement of IL-32θ in breast cancer cell proliferation is not yet fully understood; therefore, the current study aimed to determine how IL-32θ affects cancer cell growth and evaluated the responses of IL-32θ-expressing cells to other cancer therapy. We compared the functions of IL-32θ in triple-negative breast cancer MDA-MB-231 cells that stably express IL-32θ, with MDA-MB-231 cells transfected with a mock vector. Slower growth was observed in cells expressing IL-32θ than in control cells, and changes were noted in nuclear morphology, mitotic division, and nucleolar size between the two groups of cells. Interleukin-32θ significantly reduced the colony-forming ability of MDA-MB-231 cells and induced permanent cell cycle arrest at the G1 phase. Long-term IL-32θ accumulation triggered permanent senescence and chromosomal instability in MDA-MB-231 cells. Genotoxic drug doxorubicin (DR) reduced the viability of MDA-MB-231 cells not expressing IL-32θ more than in cells expressing IL-32θ. Overall, these findings suggest that IL-32θ exerts antiproliferative effects in breast cancer cells and initiates senescence, which may cause DR resistance. Therefore, targeting IL-32θ in combination with DR treatment may not be suitable for treating metastatic breast cancer.

SUBMITTER: Pham TH 

PROVIDER: S-EPMC8124300 | biostudies-literature | 2021 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interleukin-32θ Triggers Cellular Senescence and Reduces Sensitivity to Doxorubicin-Mediated Cytotoxicity in MDA-MB-231 Cells.

Pham Thu-Huyen TH   Park Hyo-Min HM   Kim Jinju J   Hong Jin-Tae JT   Yoon Do-Young DY  

International journal of molecular sciences 20210507 9


The recently discovered interleukin (IL)- 32 isoform IL-32θ exerts anti-metastatic effects in the breast tumor microenvironment. However, the involvement of IL-32θ in breast cancer cell proliferation is not yet fully understood; therefore, the current study aimed to determine how IL-32θ affects cancer cell growth and evaluated the responses of IL-32θ-expressing cells to other cancer therapy. We compared the functions of IL-32θ in triple-negative breast cancer MDA-MB-231 cells that stably express  ...[more]

Similar Datasets

| S-EPMC11339111 | biostudies-literature
| S-EPMC10222377 | biostudies-literature
| S-EPMC11010853 | biostudies-literature
| S-EPMC10821154 | biostudies-literature
| S-EPMC4558132 | biostudies-literature
| S-EPMC8691732 | biostudies-literature
| S-EPMC11608567 | biostudies-literature
| S-EPMC5780039 | biostudies-literature
| S-EPMC5809808 | biostudies-literature
| S-ECPF-GEOD-20085 | biostudies-other