Unknown

Dataset Information

0

COL4A3 expression in asthmatic epithelium depends on intronic methylation and ZNF263 binding.


ABSTRACT: Reduction of COL4A3, one of the six isoforms of collagen 4, in asthmatic airways results in increased inflammation and angiogenesis, implicating it as a central part of asthma pathogenesis. However, to date, the path underlying these diminished COL4A3 levels has been elusive. This study investigated a possible mechanism underlying the reduction of COL4A3 expression. Bronchial biopsies of 76 patients with asthma and 83 controls were subjected to RNA-sequencing and DNA methylation bead arrays to identify expression and methylation changes. The binding of ZNF263 was analysed by chromatin-immunoprecipitation sequencing coupled with quantitative (q)PCR. Effects of ZNF263 silencing, using small interfering RNA, on the COL4A3 expression were studied using qPCR. COL4A3 expression was significantly reduced in bronchial biopsies compared to healthy controls, whereas DNA methylation levels at cg11797365 were increased. COL4A3 expression levels were significantly low in asthmatics without inhaled corticosteroid (ICS) use, whereas the expression was not statistically different between asthmatics using ICS and controls. Methylation levels at cg11797365 in vitro were increased upon consecutive rhinovirus infections. Our data indicate an epigenetic modification as a contributing factor for the loss of COL4A3 expression in asthmatic airway epithelium.

SUBMITTER: Nemani SSP 

PROVIDER: S-EPMC8181658 | biostudies-literature | 2021 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>COL4A3</i> expression in asthmatic epithelium depends on intronic methylation and ZNF263 binding.

Nemani Sai Sneha Priya SSP   Vermeulen Cornelis Joseph CJ   Pech Martin M   Faiz Alen A   Oliver Brian George G BGG   van den Berge Maarten M   Burgess Janette Kay JK   Kopp Matthias V MV   Weckmann Markus M  

ERJ open research 20210401 2


<h4>Background</h4>Reduction of COL4A3, one of the six isoforms of collagen 4, in asthmatic airways results in increased inflammation and angiogenesis, implicating it as a central part of asthma pathogenesis. However, to date, the path underlying these diminished COL4A3 levels has been elusive. This study investigated a possible mechanism underlying the reduction of COL4A3 expression.<h4>Methods</h4>Bronchial biopsies of 76 patients with asthma and 83 controls were subjected to RNA-sequencing an  ...[more]

Similar Datasets

| S-EPMC6538329 | biostudies-literature
| S-EPMC4666305 | biostudies-literature
| S-EPMC3135846 | biostudies-literature
| S-EPMC4203885 | biostudies-literature
| S-EPMC2862303 | biostudies-literature
| S-EPMC9254217 | biostudies-literature
| S-EPMC3568120 | biostudies-literature
| S-EPMC3780877 | biostudies-literature
| S-EPMC3358731 | biostudies-literature
| S-EPMC3751915 | biostudies-literature