Ontology highlight
ABSTRACT: Purpose
To generate diagnostic 18F-FDG PET images of pediatric cancer patients from ultra-low-dose 18F-FDG PET input images, using a novel artificial intelligence (AI) algorithm.Methods
We used whole-body 18F-FDG-PET/MRI scans of 33 children and young adults with lymphoma (3-30 years) to develop a convolutional neural network (CNN), which combines inputs from simulated 6.25% ultra-low-dose 18F-FDG PET scans and simultaneously acquired MRI scans to produce a standard-dose 18F-FDG PET scan. The image quality of ultra-low-dose PET scans, AI-augmented PET scans, and clinical standard PET scans was evaluated by traditional metrics in computer vision and by expert radiologists and nuclear medicine physicians, using Wilcoxon signed-rank tests and weighted kappa statistics.Results
The peak signal-to-noise ratio and structural similarity index were significantly higher, and the normalized root-mean-square error was significantly lower on the AI-reconstructed PET images compared to simulated 6.25% dose images (p < 0.001). Compared to the ground-truth standard-dose PET, SUVmax values of tumors and reference tissues were significantly higher on the simulated 6.25% ultra-low-dose PET scans as a result of image noise. After the CNN augmentation, the SUVmax values were recovered to values similar to the standard-dose PET. Quantitative measures of the readers' diagnostic confidence demonstrated significantly higher agreement between standard clinical scans and AI-reconstructed PET scans (kappa = 0.942) than 6.25% dose scans (kappa = 0.650).Conclusions
Our CNN model could generate simulated clinical standard 18F-FDG PET images from ultra-low-dose inputs, while maintaining clinically relevant information in terms of diagnostic accuracy and quantitative SUV measurements.
SUBMITTER: Wang YJ
PROVIDER: S-EPMC8266729 | biostudies-literature | 2021 Aug
REPOSITORIES: biostudies-literature
Wang Yan-Ran Joyce YJ Baratto Lucia L Hawk K Elizabeth KE Theruvath Ashok J AJ Pribnow Allison A Thakor Avnesh S AS Gatidis Sergios S Lu Rong R Gummidipundi Santosh E SE Garcia-Diaz Jordi J Rubin Daniel D Daldrup-Link Heike E HE
European journal of nuclear medicine and molecular imaging 20210201 9
<h4>Purpose</h4>To generate diagnostic <sup>18</sup>F-FDG PET images of pediatric cancer patients from ultra-low-dose <sup>18</sup>F-FDG PET input images, using a novel artificial intelligence (AI) algorithm.<h4>Methods</h4>We used whole-body <sup>18</sup>F-FDG-PET/MRI scans of 33 children and young adults with lymphoma (3-30 years) to develop a convolutional neural network (CNN), which combines inputs from simulated 6.25% ultra-low-dose <sup>18</sup>F-FDG PET scans and simultaneously acquired M ...[more]