Unknown

Dataset Information

0

Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts.


ABSTRACT:

Background

Three tools are currently available to predict the risk of contralateral breast cancer (CBC). We aimed to compare the performance of the Manchester formula, CBCrisk, and PredictCBC in patients with invasive breast cancer (BC).

Methods

We analyzed data of 132,756 patients (4682 CBC) from 20 international studies with a median follow-up of 8.8 years. Prediction performance included discrimination, quantified as a time-dependent Area-Under-the-Curve (AUC) at 5 and 10 years after diagnosis of primary BC, and calibration, quantified as the expected-observed (E/O) ratio at 5 and 10 years and the calibration slope.

Results

The AUC at 10 years was: 0.58 (95% confidence intervals [CI] 0.57-0.59) for CBCrisk; 0.60 (95% CI 0.59-0.61) for the Manchester formula; 0.63 (95% CI 0.59-0.66) and 0.59 (95% CI 0.56-0.62) for PredictCBC-1A (for settings where BRCA1/2 mutation status is available) and PredictCBC-1B (for the general population), respectively. The E/O at 10 years: 0.82 (95% CI 0.51-1.32) for CBCrisk; 1.53 (95% CI 0.63-3.73) for the Manchester formula; 1.28 (95% CI 0.63-2.58) for PredictCBC-1A and 1.35 (95% CI 0.65-2.77) for PredictCBC-1B. The calibration slope was 1.26 (95% CI 1.01-1.50) for CBCrisk; 0.90 (95% CI 0.79-1.02) for PredictCBC-1A; 0.81 (95% CI 0.63-0.99) for PredictCBC-1B, and 0.39 (95% CI 0.34-0.43) for the Manchester formula.

Conclusions

Current CBC risk prediction tools provide only moderate discrimination and the Manchester formula was poorly calibrated. Better predictors and re-calibration are needed to improve CBC prediction and to identify low- and high-CBC risk patients for clinical decision-making.

SUBMITTER: Giardiello D 

PROVIDER: S-EPMC8380991 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts.

Giardiello Daniele D   Hauptmann Michael M   Steyerberg Ewout W EW   Adank Muriel A MA   Akdeniz Delal D   Blom Jannet C JC   Blomqvist Carl C   Bojesen Stig E SE   Bolla Manjeet K MK   Brinkhuis Mariël M   Chang-Claude Jenny J   Czene Kamila K   Devilee Peter P   Dunning Alison M AM   Easton Douglas F DF   Eccles Diana M DM   Fasching Peter A PA   Figueroa Jonine J   Flyger Henrik H   García-Closas Montserrat M   Haeberle Lothar L   Haiman Christopher A CA   Hall Per P   Hamann Ute U   Hopper John L JL   Jager Agnes A   Jakubowska Anna A   Jung Audrey A   Keeman Renske R   Koppert Linetta B LB   Kramer Iris I   Lambrechts Diether D   Le Marchand Loic L   Lindblom Annika A   Lubiński Jan J   Manoochehri Mehdi M   Mariani Luigi L   Nevanlinna Heli H   Oldenburg Hester S A HSA   Pelders Saskia S   Pharoah Paul D P PDP   Shah Mitul M   Siesling Sabine S   Smit Vincent T H B M VTHBM   Southey Melissa C MC   Tapper William J WJ   Tollenaar Rob A E M RAEM   van den Broek Alexandra J AJ   van Deurzen Carolien H M CHM   van Leeuwen Flora E FE   van Ongeval Chantal C   Van't Veer Laura J LJ   Wang Qin Q   Wendt Camilla C   Westenend Pieter J PJ   Hooning Maartje J MJ   Schmidt Marjanka K MK  

Breast cancer research and treatment 20200411 2


<h4>Background</h4>Three tools are currently available to predict the risk of contralateral breast cancer (CBC). We aimed to compare the performance of the Manchester formula, CBCrisk, and PredictCBC in patients with invasive breast cancer (BC).<h4>Methods</h4>We analyzed data of 132,756 patients (4682 CBC) from 20 international studies with a median follow-up of 8.8 years. Prediction performance included discrimination, quantified as a time-dependent Area-Under-the-Curve (AUC) at 5 and 10 years  ...[more]

Similar Datasets

| S-EPMC9512729 | biostudies-literature
| S-EPMC7409753 | biostudies-literature
| S-EPMC7572322 | biostudies-literature
| S-EPMC9308015 | biostudies-literature
| S-EPMC5224985 | biostudies-literature
| S-EPMC8164768 | biostudies-literature
| S-EPMC6918633 | biostudies-literature
| S-EPMC9187190 | biostudies-literature
| S-EPMC9576458 | biostudies-literature