Project description:The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) system is widely used as a tool for genome engineering in various organisms. A complex consisting of Cas9 and single guide RNA (sgRNA) induces a DNA double-strand break in a sequence-specific manner, resulting in knockout. Some binary vectors for CRISPR/Cas9 in plants have been reported, but there is a problem with low efficiency. Here, we present a newly developed, highly efficient CRISPR/Cas9 vector for Arabidopsis thaliana, pKAMA-ITACHI Red (pKIR), harboring the RIBOSOMAL PROTEIN S5 A (RPS5A) promoter to drive Cas9. The RPS5A promoter maintains high constitutive expression at all developmental stages starting from the egg cell and including meristematic cells. Even in the T1 generation, pKIR induced null phenotypes in some genes: PHYTOENE DESATURASE 3 (PDS3), AGAMOUS (AG) and DUO POLLEN 1 (DUO1). Mutations induced by pKIR were carried in the germ cell line of the T1 generation. Surprisingly, in some lines, 100% of the T2 plants had the adh1 (ALCOHOL DEHYDROGENASE 1) null phenotype, indicating that pKIR strongly induced heritable mutations. Cas9-free T2 mutant plants were obtained by removing T2 seeds expressing a fluorescent marker in pKIR. Our results suggest that the pKIR system is a powerful molecular tool for genome engineering in Arabidopsis.
Project description:CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9 (CRISPR-associated protein 9) has become the tool of choice for generating gene knockouts across a variety of species. The ability for efficient gene editing in primary T cells not only represents a valuable research tool to study gene function but also holds great promise for T cell-based immunotherapies, such as next-generation chimeric antigen receptor (CAR) T cells. Previous attempts to apply CRIPSR/Cas9 for gene editing in primary T cells have resulted in highly variable knockout efficiency and required T cell receptor (TCR) stimulation, thus largely precluding the study of genes involved in T cell activation or differentiation. Here, we describe an optimized approach for Cas9/RNP transfection of primary mouse and human T cells without TCR stimulation that results in near complete loss of target gene expression at the population level, mitigating the need for selection. We believe that this method will greatly extend the feasibly of target gene discovery and validation in primary T cells and simplify the gene editing process for next-generation immunotherapies.
Project description:The CRISPR/Cas9 system enables precision editing of the genome of the model plant Arabidopsis thaliana and likely of any other organism. Tools and methods for further developing and optimizing this widespread and versatile system in Arabidopsis would hence be welcomed. Here, we designed a generic vector system that can be used to clone any sgRNA sequence in a plant T-DNA vector containing an ubiquitously expressed Cas9 gene. With this vector, we explored two alternative marker systems for tracking Cas9-mediated gene-editing in vivo: BIALAPHOS RESISTANCE (BAR) and GLABROUS1 (GL1). BAR confers resistance to glufosinate and is widely used as a positive selection marker; GL1 is required for the formation of trichomes. Reversion of a frameshift null BAR allele to a functional one by Cas9-mediated gene editing yielded a higher than expected number of plants that are resistant to glufosinate. Surprisingly, many of those plants did not display reversion of the BAR gene through the germline. We hypothesize that few BAR revertant cells in a highly chimeric plant likely provide system-wide resistance to glufosinate and thus we suggest that BAR is not suitable as marker for tracking Cas9-mediated gene-editing. Targeting the GL1 gene for disruption with Cas9 provided clearly visible phenotypes of partially and completely glabrous plants. 50% of the analyzed T1 plants produced descendants with a chimeric phenotype and we could recover fully homozygous plants in the T3 generation with high efficiency. We propose that targeting of GL1 is suitable for assessing and optimizing Cas9-mediated gene-editing in Arabidopsis.
Project description:The CRISPR/Cas9 system has emerged as a powerful tool for gene editing in plants and beyond. We have developed a plant vector system for targeted Cas9-dependent mutagenesis of genes in up to two different target sites in Arabidopsis thaliana. This protocol describes a simple 1-week cloning procedure for a single T-DNA vector containing the genes for Cas9 and sgRNAs, as well as the detection of induced mutations in planta. The procedure can likely be adapted for other transformable plant species.
Project description:We report that Cas9/gRNA mediates efficient genetic modifications in Drosophila. Through targeting seven loci, we achieved a germline efficiency of up to 100%. Genes in both heterochromatin and euchromatin can be modified efficiently. Thus the Cas9/gRNA system is an attractive tool for rapid disruption of essentially any gene in Drosophila.
Project description:In Bacillus subtilis, large genomic deletions have been carried out for genome reduction, antibiotic overproduction, and heterologous protein overexpression. In view of the eco-friendliness of B. subtilis, it is critical that engineering preserves its food-grade status and avoids leaving foreign DNA in the genome. Existing methods of generating large genomic deletions leave antibiotic resistance markers or display low mutation efficiency. In this study, we introduced a clustered regularly interspaced short palindromic repeat-derived genome engineering technique to develop a highly efficient method of generating large genomic deletions in B. subtilis without any trace of foreign DNA. Using our system, we produced 38 kb plipastatin-synthesizing pps operon deletion with 80% efficiency. The significant increase in mutation efficiency was due to plasmids-delivered Streptococcus pyogenes-originated SpCas9, target-specific sgRNA and a donor DNA template, which produces SpCas9/sgRNA endonuclease complex continuously for attacking target chromosome until the mutagenic repair occurs. Our system produced single-gene deletion in spo0A (∼100%), point mutation (∼68%) and GFP gene insertion (∼97%) in sigE and demonstrated its broad applicability for various types of site-directed mutagenesis in B. subtilis.
Project description:The newly developed CRISPR/Cas9 system for targeted gene knockout or editing has recently been shown to function in plants in both transient expression systems as well as in primary T1 transgenic plants. However, stable transmission of genes modified by the Cas9/single guide RNA (sgRNA) system to the T2 generation and beyond has not been demonstrated. Here we provide extensive data demonstrating the efficiency of Cas9/sgRNA in causing modification of a chromosomally integrated target reporter gene during early development of transgenic Arabidopsis plants and inheritance of the modified gene in T2 and T3 progeny. Efficient conversion of a nonfunctional, out-of-frame GFP gene to a functional GFP gene was confirmed in T1 plants by the observation of green fluorescent signals in leaf tissues as well as the presence of mutagenized DNA sequences at the sgRNA target site within the GFP gene. All GFP-positive T1 transgenic plants and nearly all GFP-negative plants examined contained mutagenized GFP genes. Analyses of 42 individual T2 generation plants derived from 6 different T1 progenitor plants showed that 50% of T2 plants inherited a single T-DNA insert. The efficiency of the Cas9/sgRNA system and stable inheritance of edited genes point to the promise of this system for facile editing of plant genes.
Project description:The current method for creation of vaccinia virus (VACV) vectors involves using a selection and purification marker, however inclusion of a gene without therapeutic value in the resulting vector is not desirable for clinical use. The Cre-LoxP system has been used to make marker-free Poxviruses, but the efficiency was very low. To obtain a marker-free VACV vector, we developed marker gene excision systems to modify the thymidine kinase (TK) region and N1L regions using Cre-Loxp and Flp-FRET systems respectively. CRISPR-Cas9 system significantly resulted in a high efficiency (~90%) in generation of marker gene-positive TK-mutant VACV vector. The marker gene (RFP) could be excised from the recombinant virus using Cre recombinase. To make a marker-free VV vector with double gene deletions targeting the TK and N1L gene, we constructed a donor repair vector targeting the N1L gene, which can carry a therapeutic gene and the marker (RFP) that could be excised from the recombinant virus using Flp recombinase. The marker-free system developed here can be used to efficiently construct VACV vectors armed with any therapeutic genes in the TK region or N1L region without marker genes. Our marker-free system platform has significant potential for development of new marker-free VACV vectors for clinical application.
Project description:In Arabidopsis, the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a main regulator of the cold signaling. In this study, CRISPR/Cas9-mediated targeted mutagenesis of the HOS1 gene in the first exon was performed. DNA sequencing showed that frameshift indels introduced by genome editing of HOS1 resulted in the appearance of premature stop codons, disrupting the open reading frame. Obtained hos1Cas9 mutant plants were compared with the SALK T-DNA insertion mutant, line hos1-3, in terms of their tolerance to abiotic stresses, accumulation of secondary metabolites and expression levels of genes participating in these processes. Upon exposure to cold stress, enhanced tolerance and expression of cold-responsive genes were observed in both hos1-3 and hos1Cas9 plants. The hos1 mutation caused changes in the synthesis of phytoalexins in transformed cells. The content of glucosinolates (GSLs) was down-regulated by 1.5-times, while flavonol glycosides were up-regulated by 1.2 to 4.2 times in transgenic plants. The transcript abundance of the corresponding MYB and bHLH transcription factors, which are responsible for the regulation of secondary metabolism in Arabidopsis, were also altered. Our data suggest a relationship between HOS1-regulated downstream signaling and phytoalexin biosynthesis.
Project description:The CRISPR/Cas9 system has been adapted as an efficient genome editing tool in laboratory animals such as mice, rats, zebrafish and pigs. Here, we report that CRISPR/Cas9 mediated approach can efficiently induce monoallelic and biallelic gene knockout in goat primary fibroblasts. Four genes were disrupted simultaneously in goat fibroblasts by CRISPR/Cas9-mediated genome editing. The single-gene knockout fibroblasts were successfully used for somatic cell nuclear transfer (SCNT) and resulted in live-born goats harboring biallelic mutations. The CRISPR/Cas9 system represents a highly effective and facile platform for targeted editing of large animal genomes, which can be broadly applied to both biomedical and agricultural applications.