Publisher Correction to: An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans.
Publisher Correction to: An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans.
Project description:BackgroundOptogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm.ResultsThe OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm's power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing.ConclusionWe have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community.
Project description:Controllable, precise, and stable rotational manipulation of model organisms is valuable in many biomedical, bioengineering, and biophysics applications. We present an acoustofluidic chip capable of rotating Caenorhabditis elegans (C. elegans) in both static and continuous flow in a controllable manner. Rotational manipulation was achieved by exposing C. elegans to a surface acoustic wave (SAW) field that generated a vortex distribution inside a microchannel. By selectively activating interdigital transducers, we achieved bidirectional rotation of C. elegans, namely counterclockwise and clockwise, with on-demand switching of rotation direction in a single chip. In addition to continuous rotation, we also rotated C. elegans in a step-wise fashion with a step angle as small as 4° by pulsing the signal duration of SAW from a continuous signal to a pulsed signal down to 1.5 ms. Using this device, we have clearly imaged the dopaminergic neurons of C. elegans with pdat-1:GFP expression, as well as the vulval muscles and muscle fibers of the worm with myo-3::GFP fusion protein expression in different orientations and three dimensions. These achievements are difficult to realize through conventional (i.e., non-confocal) microscopy. The SAW manipulations did not detectably affect the health of the model organisms. With its precision, controllability, and simplicity in fabrication and operation, our acoustofluidic devices will be well-suited for model organism studies.
Project description:We present an optogenetic illumination system capable of real-time light delivery with high spatial resolution to specified targets in freely moving Caenorhabditis elegans. A tracking microscope records the motion of an unrestrained worm expressing channelrhodopsin-2 or halorhodopsin in specific cell types. Image processing software analyzes the worm's position in each video frame, rapidly estimates the locations of targeted cells and instructs a digital micromirror device to illuminate targeted cells with laser light of the appropriate wavelengths to stimulate or inhibit activity. Because each cell in an unrestrained worm is a rapidly moving target, our system operates at high speed (?50 frames per second) to provide high spatial resolution (?30 ?m). To test the accuracy, flexibility and utility of our system, we performed optogenetic analyses of the worm motor circuit, egg-laying circuit and mechanosensory circuits that have not been possible with previous methods.
Project description:A common property of aging in all animals is that chronologically and genetically identical individuals age at different rates. To unveil mechanisms that influence aging variability, we identified markers of remaining lifespan for Caenorhabditis elegans. In transgenic lines, we expressed fluorescent reporter constructs from promoters of C. elegans genes whose expression change with age. The expression levels of aging markers in individual worms from a young synchronous population correlated with their remaining lifespan. We identified eight aging markers, with the superoxide dismutase gene sod-3 expression being the best single predictor of remaining lifespan. Correlation with remaining lifespan became stronger if expression from two aging markers was monitored simultaneously, accounting for up to 49% of the variation in individual lifespan. Visualizing the physiological age of chronologically-identical individuals allowed us to show that a major source of lifespan variability is different pathogenicity from individual to individual and that the mechanism involves variable activation of the insulin-signaling pathway.
Project description:The sarcomere, the fundamental unit of muscle contraction, is a highly-ordered complex of hundreds of proteins. Despite decades of genetics work, the functional relationships and the roles of those sarcomeric proteins in animal behaviors remain unclear. In this paper, we demonstrate that optogenetic activation of the motor neurons that induce muscle contraction can facilitate quantitative studies of muscle kinetics in C. elegans. To increase the throughput of the study, we trapped multiple worms in parallel in a microfluidic device and illuminated for photoactivation of channelrhodopsin-2 to induce contractions in body wall muscles. Using image processing, the change in body size was quantified over time. A total of five parameters including rate constants for contraction and relaxation were extracted from the optogenetic assay as descriptors of sarcomere functions. To potentially relate the genes encoding the sarcomeric proteins functionally, a hierarchical clustering analysis was conducted on the basis of those parameters. Because it assesses physiological output different from conventional assays, this method provides a complement to the phenotypic analysis of C. elegans muscle mutants currently performed in many labs; the clusters may provide new insights and drive new hypotheses for functional relationships among the many sarcomere components.
Project description:In deep tissue, optogenetics faces limitations with visible light. Here, we present a protocol for near-infrared (NIR) optogenetics manipulation of neurons and motor behavior in Caenorhabditis elegans using emissive upconversion nanoparticles (UCNPs). We describe steps for synthesizing and modifying UCNPs. We then detail procedures for regulating neurons using these UCNPs in the model organism C. elegans. Using NIR light allows for superior tissue penetration to manipulate neuronal activities and locomotion behavior. For complete details on the use and execution of this protocol, please refer to Guo et al.,1 Ao et al.,2 and Zhang et al.3.
Project description:Normal aging leads to an inexorable decline in motor performance, contributing to medical morbidity and decreased quality of life. While much has been discovered about genetic determinants of lifespan, less is known about modifiers of age-related behavioral decline and whether new gene targets may be found which extend vigorous activity, with or without extending lifespan. Using Caenorhabditis elegans, we have developed a model of declining neuromuscular function and conducted a screen for increased behavioral activity in aged animals. In this model, behavioral function suffers from profound reductions in locomotory frequency, but coordination is strikingly preserved until very old age. By screening for enhancers of locomotion at advanced ages we identified the ras-related Rag GTPase raga-1 as a novel modifier of behavioral aging. raga-1 loss of function mutants showed vigorous swimming late in life. Genetic manipulations revealed that a gain of function raga-1 curtailed behavioral vitality and shortened lifespan, while a dominant negative raga-1 lengthened lifespan. Dietary restriction results indicated that a raga-1 mutant is relatively protected from the life-shortening effects of highly concentrated food, while RNAi experiments suggested that raga-1 acts in the highly conserved target of rapamycin (TOR) pathway in C. elegans. Rag GTPases were recently shown to mediate nutrient-dependent activation of TOR. This is the first demonstration of their dramatic effects on behavior and aging. This work indicates that novel modulators of behavioral function can be identified in screens, with implications for future study of the clinical amelioration of age-related decline.