Unknown

Dataset Information

0

Radiologic-pathologic analysis of increased ethanol localization and ablative extent achieved by ethyl cellulose.


ABSTRACT: Ethanol provides a rapid, low-cost ablative solution for liver tumors with a small technological footprint but suffers from uncontrolled diffusion in target tissue, limiting treatment precision and accuracy. Incorporating the gel-forming polymer ethyl cellulose to ethanol localizes the distribution. The purpose of this study was to establish a non-invasive methodology based on CT imaging to quantitatively determine the relationship between the delivery parameters of the EC-ethanol formulation, its distribution, and the corresponding necrotic volume. The relationship of radiodensity to ethanol concentration was characterized with water-ethanol surrogates. Ex vivo EC-ethanol ablations were performed to optimize the formulation (n = 6). In vivo ablations were performed to compare the optimal EC-ethanol formulation to pure ethanol (n = 6). Ablations were monitored with CT and ethanol distribution volume was quantified. Livers were removed, sectioned and stained with NADH-diaphorase to determine the ablative extent, and a detailed time-course histological study was performed to assess the wound healing process. CT imaging of ethanol-water surrogates demonstrated the ethanol concentration-radiodensity relationship is approximately linear. A concentration of 12% EC in ethanol created the largest distribution volume, more than eight-fold that of pure ethanol, ex vivo. In vivo, 12% EC-ethanol was superior to pure ethanol, yielding a distribution volume three-fold greater and an ablation zone six-fold greater than pure ethanol. Finally, a time course histological evaluation of the liver post-ablation with 12% EC-ethanol and pure ethanol revealed that while both induce coagulative necrosis and similar tissue responses at 1-4 weeks post-ablation, 12% EC-ethanol yielded a larger ablation zone. The current study demonstrates the suitability of CT imaging to determine distribution volume and concentration of ethanol in tissue. The distribution volume of EC-ethanol is nearly equivalent to the resultant necrotic volume and increases distribution and necrosis compared to pure ethanol.

SUBMITTER: Chelales E 

PROVIDER: S-EPMC8526742 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Radiologic-pathologic analysis of increased ethanol localization and ablative extent achieved by ethyl cellulose.

Chelales Erika E   Morhard Robert R   Nief Corrine C   Crouch Brian B   Everitt Jeffrey I JI   Sag Alan Alper AA   Ramanujam Nirmala N  

Scientific reports 20211019 1


Ethanol provides a rapid, low-cost ablative solution for liver tumors with a small technological footprint but suffers from uncontrolled diffusion in target tissue, limiting treatment precision and accuracy. Incorporating the gel-forming polymer ethyl cellulose to ethanol localizes the distribution. The purpose of this study was to establish a non-invasive methodology based on CT imaging to quantitatively determine the relationship between the delivery parameters of the EC-ethanol formulation, i  ...[more]

Similar Datasets

| S-EPMC7295656 | biostudies-literature
| S-EPMC11558191 | biostudies-literature
| S-EPMC6769395 | biostudies-literature
| S-EPMC7832124 | biostudies-literature
| S-EPMC3309799 | biostudies-literature
| S-EPMC7681778 | biostudies-literature
| S-EPMC6137398 | biostudies-literature
| S-EPMC6447731 | biostudies-literature
| S-EPMC10580106 | biostudies-literature
| S-EPMC10669649 | biostudies-literature