Unknown

Dataset Information

0

Tuning adlayer-substrate interactions of graphene/h-BN heterostructures on Cu(111)-Ni and Ni(111)-Cu surface alloys.


ABSTRACT: The evolution of the interface and interaction of h-BN and graphene/h-BN (Gr/h-BN) on Cu(111)-Ni and Ni(111)-Cu surface alloys versus the Ni/Cu atomic percentage on the alloy surface were comparatively studied by the DFT-D2 method, including the critical long-range van der Waals forces. Our results showed that the interaction strength and interface distance of Gr/h-BN/metal can be distinctly tuned by regulating the chemical composition of the surface alloy at the interface. The initially weak interaction of h-BN/Cu(111)-Ni increased linearly with increasing Ni atomic percentage, and the interface distances decreased from ∼3.10 to ∼2.10 Å. For the h-BN/Ni(111)-Cu interface, the strong interaction of the NtopBfcc/hcp stacking decreased sharply with increasing Cu atomic percentage from 0% to 50%, and the interface distances increased from ∼2.15 to ∼3.00 Å; meanwhile, the weak interaction of the BtopNfcc/hcp stacking decreased slightly with increasing Cu atomic percentage. The absorption of graphene on h-BN/Cu(111)-Ni with BtopNhollow/NtopBfcc and BtopNhollow/BtopNfcc stacking was more energetically favorable than that with NtopBhollow/NtopBfcc and NtopBhollow/BtopNfcc at Ni atomic percentages under 75%, while the interaction energy of graphene on h-BN/Cu(111)-Ni increased sharply at Ni atomic percentages higher than 75% for the BtopNhollow/NtopBfcc and NtopBhollow/NtopBfcc stacking. In contrast, the interaction between graphene and the h-BN/Ni(111)-Cu surface increased sharply at Cu atomic percentages lower than 25% and decreased sharply at Cu atomic percentages higher than 75%. The interaction energies were higher when the percentage of Cu atom was between 25% and 75%. The analysis of charge transfer and density of states provided further details on the changing character and evolution trends of the interactions among graphene, h-BN, and Cu-Ni surface alloy versus the Ni/Cu atomic percentage.

SUBMITTER: Huang J 

PROVIDER: S-EPMC8693814 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tuning adlayer-substrate interactions of graphene/h-BN heterostructures on Cu(111)-Ni and Ni(111)-Cu surface alloys.

Huang Jianmei J   Wang Qiang Q   Liu Pengfei P   Chen Guang-Hui GH   Yang Yanhui Y  

RSC advances 20210106 4


The evolution of the interface and interaction of h-BN and graphene/h-BN (Gr/h-BN) on Cu(111)-Ni and Ni(111)-Cu surface alloys <i>versus</i> the Ni/Cu atomic percentage on the alloy surface were comparatively studied by the DFT-D2 method, including the critical long-range van der Waals forces. Our results showed that the interaction strength and interface distance of Gr/h-BN/metal can be distinctly tuned by regulating the chemical composition of the surface alloy at the interface. The initially  ...[more]

Similar Datasets

| S-EPMC4411207 | biostudies-literature
| S-EPMC5680335 | biostudies-literature
| S-EPMC4738398 | biostudies-literature
| S-EPMC5575158 | biostudies-literature
| S-EPMC5002934 | biostudies-literature
| S-EPMC4643226 | biostudies-literature
| S-EPMC3847699 | biostudies-other
| S-EPMC5658445 | biostudies-literature
| S-EPMC10184169 | biostudies-literature
| S-EPMC5765078 | biostudies-literature